Analýza signálu pro MEMS pseudonáhodné testování použitím neuronových sítí
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F08%3A00500550" target="_blank" >RIV/49777513:23220/08:00500550 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Signature Analysis for MEMS Pseudorandom Testing Using Neural Networks
Popis výsledku v původním jazyce
The aim of this work is to develop a low-overhead, low-cost built-in test for Micro Electro Mechanical Systems (MEMS). The proposed method relies on processing the Impulse Response (IR) through trained neural networks, in order to predict a set of MEMS performances, which are otherwise very expensive to measure using the conventional test approach. The use of neural networks allows us to employ a low-dimensional IR signature, which results in a compact built-in test. A MEMS structure combining electro-thermal excitation and piezoresistive sensing was chosen as our case study. A behavioral model of this structure was built using Matlab for the purpose of the experiment. The results demonstrate that the neural network predictions are in excellent agreement with the simulation results of the behavioral model.
Název v anglickém jazyce
Signature Analysis for MEMS Pseudorandom Testing Using Neural Networks
Popis výsledku anglicky
The aim of this work is to develop a low-overhead, low-cost built-in test for Micro Electro Mechanical Systems (MEMS). The proposed method relies on processing the Impulse Response (IR) through trained neural networks, in order to predict a set of MEMS performances, which are otherwise very expensive to measure using the conventional test approach. The use of neural networks allows us to employ a low-dimensional IR signature, which results in a compact built-in test. A MEMS structure combining electro-thermal excitation and piezoresistive sensing was chosen as our case study. A behavioral model of this structure was built using Matlab for the purpose of the experiment. The results demonstrate that the neural network predictions are in excellent agreement with the simulation results of the behavioral model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th IMEKO TC1-TC7 joint Symposium on Man, Science & Measurement
ISBN
2-9516453-8-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
Université de Savoie
Místo vydání
Annecy
Místo konání akce
Annecy, Francie
Datum konání akce
5. 9. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—