Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigation of cooling capability of ceramic substrates for power electronics applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F24%3A43971893" target="_blank" >RIV/49777513:23220/24:43971893 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1359431124007786" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1359431124007786</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.applthermaleng.2024.123110" target="_blank" >10.1016/j.applthermaleng.2024.123110</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigation of cooling capability of ceramic substrates for power electronics applications

  • Popis výsledku v původním jazyce

    This study investigates the cooling capability of ceramic substrates, which are commonly used in power electronics. Ceramic substrates are pivotal in thermal management because they address the challenges posed by the concurrent trends of miniaturisation and power enhancement in power electronics. Therefore, a detailed numerical study of the cooling capabilities of Al2O3 and AlN substrates with various thicknesses from 0.05 mm to 3 mm in a model configuration with defined liquid cooling is conducted. This model configuration represents a commonly used stack-up for real power electronic modules. The results of the numerical study are verified through experimental measurements. It was demonstrated that for low substrate thicknesses (0.3–0.6 mm), similar cooling capabilities can be achieved by a combination of more efficiently cooling, less thermally conductive, and less expensive substrate. However, AlN is highly efficient for cooling in applications requiring substrates with thicknesses greater than 1.0 mm. The present study proved that increasing the thickness of the AlN substrate has a negligible effect on cooling efficiency. Based on the results of the numerical study, which is verified by experimental measurements, it is possible to design the optimal thickness of the ceramic substrate, flow rate of the cooling medium, and material of the ceramic substrate to achieve the required power dissipation from the substrate without exceeding the maximum defined operating temperature.

  • Název v anglickém jazyce

    Investigation of cooling capability of ceramic substrates for power electronics applications

  • Popis výsledku anglicky

    This study investigates the cooling capability of ceramic substrates, which are commonly used in power electronics. Ceramic substrates are pivotal in thermal management because they address the challenges posed by the concurrent trends of miniaturisation and power enhancement in power electronics. Therefore, a detailed numerical study of the cooling capabilities of Al2O3 and AlN substrates with various thicknesses from 0.05 mm to 3 mm in a model configuration with defined liquid cooling is conducted. This model configuration represents a commonly used stack-up for real power electronic modules. The results of the numerical study are verified through experimental measurements. It was demonstrated that for low substrate thicknesses (0.3–0.6 mm), similar cooling capabilities can be achieved by a combination of more efficiently cooling, less thermally conductive, and less expensive substrate. However, AlN is highly efficient for cooling in applications requiring substrates with thicknesses greater than 1.0 mm. The present study proved that increasing the thickness of the AlN substrate has a negligible effect on cooling efficiency. Based on the results of the numerical study, which is verified by experimental measurements, it is possible to design the optimal thickness of the ceramic substrate, flow rate of the cooling medium, and material of the ceramic substrate to achieve the required power dissipation from the substrate without exceeding the maximum defined operating temperature.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN02000067" target="_blank" >TN02000067: Nové směry v elektronice pro průmysl 4.0 a medicínu 4.0</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Thermal Engineering

  • ISSN

    1359-4311

  • e-ISSN

    1873-5606

  • Svazek periodika

    247

  • Číslo periodika v rámci svazku

    June 2024

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    001225595100001

  • EID výsledku v databázi Scopus

    2-s2.0-85189754467