Sigma-Point Set Rotation for Derivative-Free Filters in Target Tracking Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929108" target="_blank" >RIV/49777513:23520/16:43929108 - isvavai.cz</a>
Výsledek na webu
<a href="http://isif.org/journal/11/1/1557-6418" target="_blank" >http://isif.org/journal/11/1/1557-6418</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sigma-Point Set Rotation for Derivative-Free Filters in Target Tracking Applications
Popis výsledku v původním jazyce
The paper focuses on the state estimation of the nonlinear discrete-time stochastic dynamic systems by the derivative-free filters. In particular the impact of the sigma-point set rotation on the performance of the unscented transform and the unscented Kalman filter (UKF) is analysed. It is shown that the sigma-point set rotation is an additional user-defined parameter closely tied with the covariance matrix decomposition technique used in sigma-point computation that significantly affects the estimation performance. Analysis, algorithms, and recommendations for computations of the optimal sigma-point set rotation are provided to determine either the rotation prior to the estimation experiment (off-line) or during the estimation experiment (on-line). Further, two approaches for a reduction of optimization computational costs are presented. The proposed algorithms, namely the on-line adaptive-sigma-point-set-UKF (AUKF) and off-line trained-sigma-point-set-UKF (TUKF), are illustrated and verified in a numerical study considering two static and two dynamic examples. The TUKF improves the UKF performance, while the computational complexity is preserved. The AUKF further improves the estimate accuracy with increased computational burden.
Název v anglickém jazyce
Sigma-Point Set Rotation for Derivative-Free Filters in Target Tracking Applications
Popis výsledku anglicky
The paper focuses on the state estimation of the nonlinear discrete-time stochastic dynamic systems by the derivative-free filters. In particular the impact of the sigma-point set rotation on the performance of the unscented transform and the unscented Kalman filter (UKF) is analysed. It is shown that the sigma-point set rotation is an additional user-defined parameter closely tied with the covariance matrix decomposition technique used in sigma-point computation that significantly affects the estimation performance. Analysis, algorithms, and recommendations for computations of the optimal sigma-point set rotation are provided to determine either the rotation prior to the estimation experiment (off-line) or during the estimation experiment (on-line). Further, two approaches for a reduction of optimization computational costs are presented. The proposed algorithms, namely the on-line adaptive-sigma-point-set-UKF (AUKF) and off-line trained-sigma-point-set-UKF (TUKF), are illustrated and verified in a numerical study considering two static and two dynamic examples. The TUKF improves the UKF performance, while the computational complexity is preserved. The AUKF further improves the estimate accuracy with increased computational burden.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-12068S" target="_blank" >GA15-12068S: Adaptivní přístupy k odhadu stavu nelineárních stochastických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Advances in Information Fusion
ISSN
1557-6418
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
91-109
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85006161638