Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lyusternik--Graves Theorems for the Sum of a Lipschitz Function and a Set-valued Mapping

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43931419" target="_blank" >RIV/49777513:23520/16:43931419 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1137/16M1063150" target="_blank" >http://dx.doi.org/10.1137/16M1063150</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/16M1063150" target="_blank" >10.1137/16M1063150</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lyusternik--Graves Theorems for the Sum of a Lipschitz Function and a Set-valued Mapping

  • Popis výsledku v původním jazyce

    In a paper of 1950 Graves proved that for a function f acting between Banach spaces and an interior point x in its domain, if there exists a continuous linear mapping A which is surjective and the Lipschitz modulus of the difference f-A at x is sufficiently small, then f is (linearly) open at x. This is an extension of the Banach open mapping principle from continuous linear mappings to Lipschitz functions. A closely related result was obtained earlier by Lyusternik for smooth functions. In this paper, we obtain Lyusternik--Graves theorems for mappings of the form f+F, where f is a Lipschitz continuous function around x and F is a set-valued mapping. Roughly, we give conditions under which the mapping f+F is linearly open at x for y provided that for each element A of a certain set of continuous linear operators the mapping f(x) +A(. - x) + F is linearly open at x for y. In the case when F is the zero mapping, as corollaries we obtain the theorem of Graves as well as open mapping theorems by Pourciau and Páles, and a constrained open mapping theorem by Cibulka and Fabian. From the general result we also obtain a nonsmooth inverse function theorem proved recently by Cibulka and Dontchev. Application to Nemytskii operators and a feasibility mapping in control are presented.

  • Název v anglickém jazyce

    Lyusternik--Graves Theorems for the Sum of a Lipschitz Function and a Set-valued Mapping

  • Popis výsledku anglicky

    In a paper of 1950 Graves proved that for a function f acting between Banach spaces and an interior point x in its domain, if there exists a continuous linear mapping A which is surjective and the Lipschitz modulus of the difference f-A at x is sufficiently small, then f is (linearly) open at x. This is an extension of the Banach open mapping principle from continuous linear mappings to Lipschitz functions. A closely related result was obtained earlier by Lyusternik for smooth functions. In this paper, we obtain Lyusternik--Graves theorems for mappings of the form f+F, where f is a Lipschitz continuous function around x and F is a set-valued mapping. Roughly, we give conditions under which the mapping f+F is linearly open at x for y provided that for each element A of a certain set of continuous linear operators the mapping f(x) +A(. - x) + F is linearly open at x for y. In the case when F is the zero mapping, as corollaries we obtain the theorem of Graves as well as open mapping theorems by Pourciau and Páles, and a constrained open mapping theorem by Cibulka and Fabian. From the general result we also obtain a nonsmooth inverse function theorem proved recently by Cibulka and Dontchev. Application to Nemytskii operators and a feasibility mapping in control are presented.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-00735S" target="_blank" >GA15-00735S: Analýza stability optim a ekvilibrií v ekonomii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Control and Optimization

  • ISSN

    0363-0129

  • e-ISSN

  • Svazek periodika

    54

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

    3273-3296

  • Kód UT WoS článku

    000391960900014

  • EID výsledku v databázi Scopus

    2-s2.0-84959112113