Algorithm for placement of reference points and choice of an appropriate variable shape parameter for the RBF approximation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43957171" target="_blank" >RIV/49777513:23520/20:43957171 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3233/ICA-190610" target="_blank" >https://doi.org/10.3233/ICA-190610</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/ICA-190610" target="_blank" >10.3233/ICA-190610</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algorithm for placement of reference points and choice of an appropriate variable shape parameter for the RBF approximation
Popis výsledku v původním jazyce
Many Radial Basis Functions (RBFs) contain a shape parameter which has an important role to ensure good quality of the RBF approximation. Determination of the optimal shape parameter is a difficult problem. In the majority of papers dealing with the RBF approximation, the shape parameter is set up experimentally or using some ad-hoc method. Moreover, the constant shape parameter is almost always used for the RBF approximation, but the variable shape parameter produces more accurate results. Several variable shape parameter methods, which are based on random strategy or on an evolutionary algorithm, have been developed. Another aspect which has an influence on the quality of the RBF approximation is the placement of reference points. A novel algorithm for finding an appropriate set of reference points and a variable shape parameter selection for the RBF approximation of functions y=f(x) (i.e. the case when a one-dimensional dataset is given and each point from this dataset is associated with a scalar value) is presented. Our approach has two steps and is based on exploiting features of the given dataset, such as extreme points or inflection points, and on comparison of the first curvature of a curve. The proposed algorithm can be used for the approximation of data describing a curve parameterized by one variable in multidimensional space, e.g. a robot path planning, etc.
Název v anglickém jazyce
Algorithm for placement of reference points and choice of an appropriate variable shape parameter for the RBF approximation
Popis výsledku anglicky
Many Radial Basis Functions (RBFs) contain a shape parameter which has an important role to ensure good quality of the RBF approximation. Determination of the optimal shape parameter is a difficult problem. In the majority of papers dealing with the RBF approximation, the shape parameter is set up experimentally or using some ad-hoc method. Moreover, the constant shape parameter is almost always used for the RBF approximation, but the variable shape parameter produces more accurate results. Several variable shape parameter methods, which are based on random strategy or on an evolutionary algorithm, have been developed. Another aspect which has an influence on the quality of the RBF approximation is the placement of reference points. A novel algorithm for finding an appropriate set of reference points and a variable shape parameter selection for the RBF approximation of functions y=f(x) (i.e. the case when a one-dimensional dataset is given and each point from this dataset is associated with a scalar value) is presented. Our approach has two steps and is based on exploiting features of the given dataset, such as extreme points or inflection points, and on comparison of the first curvature of a curve. The proposed algorithm can be used for the approximation of data describing a curve parameterized by one variable in multidimensional space, e.g. a robot path planning, etc.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-05534S" target="_blank" >GA17-05534S: Meshless metody pro vizualizaci velkých časově-prostorových vektorových dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Integrated Computer-Aided Engineering
ISSN
1069-2509
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000500958600001
EID výsledku v databázi Scopus
2-s2.0-85076343808