Second-order derivative of domain-dependent functionals along Nehari manifold trajectories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959290" target="_blank" >RIV/49777513:23520/20:43959290 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.esaim-cocv.org/articles/cocv/abs/2020/01/cocv180187/cocv180187.html" target="_blank" >https://www.esaim-cocv.org/articles/cocv/abs/2020/01/cocv180187/cocv180187.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/cocv/2019053" target="_blank" >10.1051/cocv/2019053</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Second-order derivative of domain-dependent functionals along Nehari manifold trajectories
Popis výsledku v původním jazyce
Assume that a family of domain-dependent functionals EΩt possesses a corresponding family of least energy critical points ut which can be found as (possibly nonunique) minimizers of EΩt over the associated Nehari manifold N(Ωt). We obtain a formula for the second-order derivative of EΩt with respect to t along Nehari manifold trajectories of the form αt(u0(Φt−1(y)) + tv(Φt−1(y))), y ∈ Ωt, where Φt is a diffeomorphism such that Φt(Ω0) = Ωt, αt ∈ ℝ is a N(Ωt)-normalization coefficient, and v is a corrector function whose choice is fairly general. Since EΩt [ut] is not necessarily twice differentiable with respect to t due to the possible nonuniqueness of ut, the obtained formula represents an upper bound for the corresponding second superdifferential, thereby providing a convenient way to study various domain optimization problems related to EΩt. An analogous formula is also obtained for the first eigenvalue of the p-Laplacian. As an application of our results, we investigate the behaviour of the first eigenvalue of the Laplacian with respect to particular perturbations of rectangles.
Název v anglickém jazyce
Second-order derivative of domain-dependent functionals along Nehari manifold trajectories
Popis výsledku anglicky
Assume that a family of domain-dependent functionals EΩt possesses a corresponding family of least energy critical points ut which can be found as (possibly nonunique) minimizers of EΩt over the associated Nehari manifold N(Ωt). We obtain a formula for the second-order derivative of EΩt with respect to t along Nehari manifold trajectories of the form αt(u0(Φt−1(y)) + tv(Φt−1(y))), y ∈ Ωt, where Φt is a diffeomorphism such that Φt(Ω0) = Ωt, αt ∈ ℝ is a N(Ωt)-normalization coefficient, and v is a corrector function whose choice is fairly general. Since EΩt [ut] is not necessarily twice differentiable with respect to t due to the possible nonuniqueness of ut, the obtained formula represents an upper bound for the corresponding second superdifferential, thereby providing a convenient way to study various domain optimization problems related to EΩt. An analogous formula is also obtained for the first eigenvalue of the p-Laplacian. As an application of our results, we investigate the behaviour of the first eigenvalue of the Laplacian with respect to particular perturbations of rectangles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS
ISSN
1292-8119
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
48
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
29
Strana od-do
1-29
Kód UT WoS článku
000568562000005
EID výsledku v databázi Scopus
2-s2.0-85091818874