Evaluation Datasets for Cross-lingual Semantic Textual Similarity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43963751" target="_blank" >RIV/49777513:23520/21:43963751 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2021.ranlp-main.59.pdf" target="_blank" >https://aclanthology.org/2021.ranlp-main.59.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.26615/978-954-452-072-4_059" target="_blank" >10.26615/978-954-452-072-4_059</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation Datasets for Cross-lingual Semantic Textual Similarity
Popis výsledku v původním jazyce
Semantic textual similarity (STS) systems estimate the degree of the meaning similarity between two sentences. Cross-lingual STS systems estimate the degree of the meaning similarity between two sentences, each in a different language. State-of-the-art algorithms usually employ a strongly supervised, resource-rich approach difficult to use for poorly-resourced languages. However, any approach needs to have evaluation data to confirm the results. In order to simplify the evaluation process for poorly-resourced languages (in terms of STS evaluation datasets), we present new datasets for cross-lingual and monolingual STS for languages without this evaluation data. We also present the results of several state-of-the-art methods on these data which can be used as a baseline for further research. We believe that this article will not only extend the current STS research to other languages, but will also encourage competition on this new evaluation data.
Název v anglickém jazyce
Evaluation Datasets for Cross-lingual Semantic Textual Similarity
Popis výsledku anglicky
Semantic textual similarity (STS) systems estimate the degree of the meaning similarity between two sentences. Cross-lingual STS systems estimate the degree of the meaning similarity between two sentences, each in a different language. State-of-the-art algorithms usually employ a strongly supervised, resource-rich approach difficult to use for poorly-resourced languages. However, any approach needs to have evaluation data to confirm the results. In order to simplify the evaluation process for poorly-resourced languages (in terms of STS evaluation datasets), we present new datasets for cross-lingual and monolingual STS for languages without this evaluation data. We also present the results of several state-of-the-art methods on these data which can be used as a baseline for further research. We believe that this article will not only extend the current STS research to other languages, but will also encourage competition on this new evaluation data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Deep Learning for Natural Language Processing Methods and Applications
ISBN
978-954-452-072-4
ISSN
1313-8502
e-ISSN
—
Počet stran výsledku
6
Strana od-do
524-529
Název nakladatele
INCOMA, Ltd.
Místo vydání
Shoumen
Místo konání akce
Shoumen, Bulgaria
Datum konání akce
1. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—