Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bifurcations in Nagumo Equations on Graphs and Fiedler Vectors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969128" target="_blank" >RIV/49777513:23520/23:43969128 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10884-021-10101-6" target="_blank" >https://link.springer.com/article/10.1007/s10884-021-10101-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10884-021-10101-6" target="_blank" >10.1007/s10884-021-10101-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bifurcations in Nagumo Equations on Graphs and Fiedler Vectors

  • Popis výsledku v původním jazyce

    Reaction-diffusion equations serve as a basic framework for numerous dynamic phenomena like pattern formation and travelling waves. Spatially discrete analogues of Nagumo reaction-diffusion equation on lattices and graphs provide insights how these phenomena are strongly influenced by the discrete and continuous spatial structures. Specifically, Nagumo equations on graphs represent rich high dimensional problems which have an exponential number of stationary solutions in the case when the reaction dominates the diffusion. In contrast, for sufficiently strong diffusion there are only three constant stationary solutions. We show that the emergence of the spatially heterogeneous solutions is closely connected to the second eigenvalue of the Laplacian matrix of a graph, the algebraic connectivity. For graphs with simple algebraic connectivity, the exact type of bifurcation of these solutions is implied by the properties of the corresponding eigenvector, the so-called Fiedler vector.

  • Název v anglickém jazyce

    Bifurcations in Nagumo Equations on Graphs and Fiedler Vectors

  • Popis výsledku anglicky

    Reaction-diffusion equations serve as a basic framework for numerous dynamic phenomena like pattern formation and travelling waves. Spatially discrete analogues of Nagumo reaction-diffusion equation on lattices and graphs provide insights how these phenomena are strongly influenced by the discrete and continuous spatial structures. Specifically, Nagumo equations on graphs represent rich high dimensional problems which have an exponential number of stationary solutions in the case when the reaction dominates the diffusion. In contrast, for sufficiently strong diffusion there are only three constant stationary solutions. We show that the emergence of the spatially heterogeneous solutions is closely connected to the second eigenvalue of the Laplacian matrix of a graph, the algebraic connectivity. For graphs with simple algebraic connectivity, the exact type of bifurcation of these solutions is implied by the properties of the corresponding eigenvector, the so-called Fiedler vector.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Dynamics and Differential Equations

  • ISSN

    1040-7294

  • e-ISSN

    1572-9222

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    2397-2412

  • Kód UT WoS článku

    000713551100001

  • EID výsledku v databázi Scopus

    2-s2.0-85118355134