TRust Your GENerator (TRYGEN): Enhancing Out-of-Model Scope Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973204" target="_blank" >RIV/49777513:23520/24:43973204 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2673-2688/5/4/104" target="_blank" >https://www.mdpi.com/2673-2688/5/4/104</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ai5040104" target="_blank" >10.3390/ai5040104</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TRust Your GENerator (TRYGEN): Enhancing Out-of-Model Scope Detection
Popis výsledku v původním jazyce
Recent research has drawn attention to the ambiguity surrounding the definition and learnability of Out-of-Distribution recognition. Although the original problem remains unsolved, the term “Out-of-Model Scope” detection offers a clearer perspective. The ability to detect Out-of-Model Scope inputs is particularly beneficial in safety-critical applications such as autonomous driving or medicine. By detecting Out-of-Model Scope situations, the system’s robustness is enhanced and it is prevented from operating in unknown and unsafe scenarios. In this paper, we propose a novel approach for Out-of-Model Scope detection that integrates three sources of information: (1) the original input, (2) its latent feature representation extracted by an encoder, and (3) a synthesized version of the input generated from its latent representation. We demonstrate the effectiveness of combining original and synthetically generated inputs to defend against adversarial attacks in the computer vision domain. Our method, TRust Your GENerator (TRYGEN), achieves results comparable to those of other state-of-the-art methods and allows any encoder to be integrated into our pipeline in a plug-and-train fashion. Through our experiments, we evaluate which combinations of the encoder’s features are most effective for discovering Out-of-Model Scope samples and highlight the importance of a compact feature space for training the generator.
Název v anglickém jazyce
TRust Your GENerator (TRYGEN): Enhancing Out-of-Model Scope Detection
Popis výsledku anglicky
Recent research has drawn attention to the ambiguity surrounding the definition and learnability of Out-of-Distribution recognition. Although the original problem remains unsolved, the term “Out-of-Model Scope” detection offers a clearer perspective. The ability to detect Out-of-Model Scope inputs is particularly beneficial in safety-critical applications such as autonomous driving or medicine. By detecting Out-of-Model Scope situations, the system’s robustness is enhanced and it is prevented from operating in unknown and unsafe scenarios. In this paper, we propose a novel approach for Out-of-Model Scope detection that integrates three sources of information: (1) the original input, (2) its latent feature representation extracted by an encoder, and (3) a synthesized version of the input generated from its latent representation. We demonstrate the effectiveness of combining original and synthetically generated inputs to defend against adversarial attacks in the computer vision domain. Our method, TRust Your GENerator (TRYGEN), achieves results comparable to those of other state-of-the-art methods and allows any encoder to be integrated into our pipeline in a plug-and-train fashion. Through our experiments, we evaluate which combinations of the encoder’s features are most effective for discovering Out-of-Model Scope samples and highlight the importance of a compact feature space for training the generator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AI
ISSN
2673-2688
e-ISSN
2673-2688
Svazek periodika
5
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
2127-2146
Kód UT WoS článku
001384211400001
EID výsledku v databázi Scopus
2-s2.0-85213430436