Kernel Least Squares Transformations for Cross-Lingual Semantic Spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973516" target="_blank" >RIV/49777513:23520/24:43973516 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-70563-2_18" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70563-2_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70563-2_18" target="_blank" >10.1007/978-3-031-70563-2_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kernel Least Squares Transformations for Cross-Lingual Semantic Spaces
Popis výsledku v původním jazyce
The rapid development in the field of natural language processing (NLP) and the increasing complexity of linguistic tasks demand the use of efficient and effective methods. Cross-lingual linear transformations between semantic spaces play a crucial role in this domain. However, compared to more advanced models such as transformers, linear transformations often fall short, especially in terms of accuracy. It is thus necessary to employ innovative approaches that not only enhance performance but also maintain low computational complexity.In this study, we propose Kernel Least Squares (KLS) for linear transformation between semantic spaces. In our comprehensive analysis involving three intrinsic and two extrinsic experiments across six languages from three different language families and a comparative evaluation with nine different linear transformation methods, we demonstrate the superior performance of KLS. Our results show that the proposed method significantly improves word translation accuracy, thereby standing out as the most efficient method for transforming only the source semantic space.
Název v anglickém jazyce
Kernel Least Squares Transformations for Cross-Lingual Semantic Spaces
Popis výsledku anglicky
The rapid development in the field of natural language processing (NLP) and the increasing complexity of linguistic tasks demand the use of efficient and effective methods. Cross-lingual linear transformations between semantic spaces play a crucial role in this domain. However, compared to more advanced models such as transformers, linear transformations often fall short, especially in terms of accuracy. It is thus necessary to employ innovative approaches that not only enhance performance but also maintain low computational complexity.In this study, we propose Kernel Least Squares (KLS) for linear transformation between semantic spaces. In our comprehensive analysis involving three intrinsic and two extrinsic experiments across six languages from three different language families and a comparative evaluation with nine different linear transformation methods, we demonstrate the superior performance of KLS. Our results show that the proposed method significantly improves word translation accuracy, thereby standing out as the most efficient method for transforming only the source semantic space.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Text, Speech, and Dialogue. Lecture Notes in Computer Science
ISBN
978-3-031-70562-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
227-238
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Brno
Datum konání akce
9. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001307840300018