Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Kernel Least Squares Transformations for Cross-Lingual Semantic Spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973516" target="_blank" >RIV/49777513:23520/24:43973516 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-70563-2_18" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70563-2_18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70563-2_18" target="_blank" >10.1007/978-3-031-70563-2_18</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Kernel Least Squares Transformations for Cross-Lingual Semantic Spaces

  • Popis výsledku v původním jazyce

    The rapid development in the field of natural language processing (NLP) and the increasing complexity of linguistic tasks demand the use of efficient and effective methods. Cross-lingual linear transformations between semantic spaces play a crucial role in this domain. However, compared to more advanced models such as transformers, linear transformations often fall short, especially in terms of accuracy. It is thus necessary to employ innovative approaches that not only enhance performance but also maintain low computational complexity.In this study, we propose Kernel Least Squares (KLS) for linear transformation between semantic spaces. In our comprehensive analysis involving three intrinsic and two extrinsic experiments across six languages from three different language families and a comparative evaluation with nine different linear transformation methods, we demonstrate the superior performance of KLS. Our results show that the proposed method significantly improves word translation accuracy, thereby standing out as the most efficient method for transforming only the source semantic space.

  • Název v anglickém jazyce

    Kernel Least Squares Transformations for Cross-Lingual Semantic Spaces

  • Popis výsledku anglicky

    The rapid development in the field of natural language processing (NLP) and the increasing complexity of linguistic tasks demand the use of efficient and effective methods. Cross-lingual linear transformations between semantic spaces play a crucial role in this domain. However, compared to more advanced models such as transformers, linear transformations often fall short, especially in terms of accuracy. It is thus necessary to employ innovative approaches that not only enhance performance but also maintain low computational complexity.In this study, we propose Kernel Least Squares (KLS) for linear transformation between semantic spaces. In our comprehensive analysis involving three intrinsic and two extrinsic experiments across six languages from three different language families and a comparative evaluation with nine different linear transformation methods, we demonstrate the superior performance of KLS. Our results show that the proposed method significantly improves word translation accuracy, thereby standing out as the most efficient method for transforming only the source semantic space.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Text, Speech, and Dialogue. Lecture Notes in Computer Science

  • ISBN

    978-3-031-70562-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    227-238

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Brno

  • Datum konání akce

    9. 9. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001307840300018