A User Recommendation System Based on Graph Neural Network and Contextual Behavior
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F23%3A43906985" target="_blank" >RIV/60076658:12510/23:43906985 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2023.vse.cz/mme_2023_proceedings.pdf" target="_blank" >https://mme2023.vse.cz/mme_2023_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A User Recommendation System Based on Graph Neural Network and Contextual Behavior
Popis výsledku v původním jazyce
Today, recommendation systems are an integral part of e-commerce services on the Internet. In connection with their development, neural networks have become the most used approach to recommender systems. In our post, we will demonstrate the use of graph neural networks to create a recommender system. E-commerce systems can be modeled using a bipartite interaction graph. There are two essential parts to this chart, users and items. In our model, context is added to them and integrated into the mentioned parts of the bipartite graph using the theory of hypothetical functions. Different elements of a bipartite graph can interact using edges. Therefore, modeling the interaction of elements can be transformed into modeling the interaction of nodes on the corresponding graph. We implemented a recommender system model in Python and used relevant libraries, which we tested on standard datasets. These experiments showed the good ability of our model for recommendations. We used the root mean square error (RMSE) and mean absolute error (MAE) indicators.
Název v anglickém jazyce
A User Recommendation System Based on Graph Neural Network and Contextual Behavior
Popis výsledku anglicky
Today, recommendation systems are an integral part of e-commerce services on the Internet. In connection with their development, neural networks have become the most used approach to recommender systems. In our post, we will demonstrate the use of graph neural networks to create a recommender system. E-commerce systems can be modeled using a bipartite interaction graph. There are two essential parts to this chart, users and items. In our model, context is added to them and integrated into the mentioned parts of the bipartite graph using the theory of hypothetical functions. Different elements of a bipartite graph can interact using edges. Therefore, modeling the interaction of elements can be transformed into modeling the interaction of nodes on the corresponding graph. We implemented a recommender system model in Python and used relevant libraries, which we tested on standard datasets. These experiments showed the good ability of our model for recommendations. We used the root mean square error (RMSE) and mean absolute error (MAE) indicators.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 41st International Conference on Mathematical Methods in Economics
ISBN
978-80-11-04132-8
ISSN
2788-3965
e-ISSN
—
Počet stran výsledku
6
Strana od-do
111-116
Název nakladatele
Czech Society for Operations Research
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
13. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—