Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated within tank fish mass estimation using infrared reflection system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F18%3A43897168" target="_blank" >RIV/60076658:12520/18:43897168 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0168169917310001" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168169917310001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compag.2018.05.025" target="_blank" >10.1016/j.compag.2018.05.025</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated within tank fish mass estimation using infrared reflection system

  • Popis výsledku v původním jazyce

    Fish size and mass information during different growth stages is important for precise feeding regime management, oxygen consumption calculations, antibiotic prescription and improving fish welfare, but also to facilitate decisions on grading, harvesting and time to harvest. The main purpose of this study was to develop an automatic system to estimate fish mass using fish dorsal geometrical features and machine learning algorithms such as random forest (RF) and support vector machine (SVM). To develop the model, Kinect as a RGB-D camera was used to acquire depth map and top view images of 295 farmed seabass (Dicentrarchus labrax, L.) of different sizes. Eight dorsal geometric features were extracted and used for model development. Ten-fold cross validation was used to optimize and validate the models. Comparison of models was made in term of the coefficient of determination (R-cv(2)) and Root Mean Square Error of prediction (RMSEP) of cross validation. Both models exhibited significant prediction, however, SVM algorithm with R-cv(2) of 0.872 (p &lt; 0.01) and RMSE of 0.13 gave a slightly better prediction of weight compared to RF with R-cv(2) of 0.868 (p &lt; 0.01) and RMSE of 0.13 was the highest R-2. Subsequently, Infrared reflection system (IREF) which is composed of a NIR range camera with an external illuminator, was also used in this study to acquire 20 fish dorsal images inside the tank. Like validation results, both algorithms had the significant prediction, however, despite the validation results, RF with R-2 = 0.84(p &lt; 0.01)andRMSE= 0.12 was better in comparison to SVM with R-2 = 0.72(p &lt; 0.01)andRMSE= 0.16. The study demonstrated that seabass geometrical dorsal features together with machine learning algorithms could be used for mass predictions. Furthermore, the IREF system can be used as a reliable, inexpensive, stressfree and accurate sensor for monitoring and estimating fish mass during cultivation within the tank.

  • Název v anglickém jazyce

    Automated within tank fish mass estimation using infrared reflection system

  • Popis výsledku anglicky

    Fish size and mass information during different growth stages is important for precise feeding regime management, oxygen consumption calculations, antibiotic prescription and improving fish welfare, but also to facilitate decisions on grading, harvesting and time to harvest. The main purpose of this study was to develop an automatic system to estimate fish mass using fish dorsal geometrical features and machine learning algorithms such as random forest (RF) and support vector machine (SVM). To develop the model, Kinect as a RGB-D camera was used to acquire depth map and top view images of 295 farmed seabass (Dicentrarchus labrax, L.) of different sizes. Eight dorsal geometric features were extracted and used for model development. Ten-fold cross validation was used to optimize and validate the models. Comparison of models was made in term of the coefficient of determination (R-cv(2)) and Root Mean Square Error of prediction (RMSEP) of cross validation. Both models exhibited significant prediction, however, SVM algorithm with R-cv(2) of 0.872 (p &lt; 0.01) and RMSE of 0.13 gave a slightly better prediction of weight compared to RF with R-cv(2) of 0.868 (p &lt; 0.01) and RMSE of 0.13 was the highest R-2. Subsequently, Infrared reflection system (IREF) which is composed of a NIR range camera with an external illuminator, was also used in this study to acquire 20 fish dorsal images inside the tank. Like validation results, both algorithms had the significant prediction, however, despite the validation results, RF with R-2 = 0.84(p &lt; 0.01)andRMSE= 0.12 was better in comparison to SVM with R-2 = 0.72(p &lt; 0.01)andRMSE= 0.16. The study demonstrated that seabass geometrical dorsal features together with machine learning algorithms could be used for mass predictions. Furthermore, the IREF system can be used as a reliable, inexpensive, stressfree and accurate sensor for monitoring and estimating fish mass during cultivation within the tank.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and electronic in agriculture

  • ISSN

    0168-1699

  • e-ISSN

  • Svazek periodika

    150

  • Číslo periodika v rámci svazku

    06/2018

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    484-492

  • Kód UT WoS článku

    000437079900048

  • EID výsledku v databázi Scopus

    2-s2.0-85047604170