Optimising the workflow for fish detection in DIDSON (Dual-frequency IDentification SONar) data with the use of optical flow and a genetic algorithm.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F21%3A00553296" target="_blank" >RIV/60077344:_____/21:00553296 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/w13091304" target="_blank" >https://doi.org/10.3390/w13091304</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/w13091304" target="_blank" >10.3390/w13091304</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimising the workflow for fish detection in DIDSON (Dual-frequency IDentification SONar) data with the use of optical flow and a genetic algorithm.
Popis výsledku v původním jazyce
DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos takes place in a manual or semi-automated manner, typically assisted by specialised software. Exploiting the visual nature of the recordings, tools and techniques from the field of computer vision can be applied in order to facilitate the relatively involved workflows. Furthermore, machine learning techniques can be used to minimise user intervention and optimise for specific detection and tracking scenarios. This study explored the feasibility of combining optical flow with a genetic algorithm, with the aim of automating motion detection and optimising target-to-background segmentation (masking) under custom criteria, expressed in terms of the result. A 1000-frame video sequence sample with sparse, smoothly moving targets, reconstructed from a 125 s DIDSON recording, was analysed under two distinct scenarios, and an elementary detection method was used to assess and compare the resulting foreground (target) masks. The results indicate a high sensitivity to motion, as well as to the visual characteristics of targets, with the resulting foreground masks generally capturing fish targets on the majority of frames, potentially with small gaps of undetected targets, lasting for no more than a few frames. Despite the high computational overhead, implementation refinements could increase computational feasibility, while an extension of the algorithms, in order to include the steps of target detection and tracking, could further improve automation and potentially provide an efficient tool for the automated preliminary assessment of voluminous DIDSON data recordings.
Název v anglickém jazyce
Optimising the workflow for fish detection in DIDSON (Dual-frequency IDentification SONar) data with the use of optical flow and a genetic algorithm.
Popis výsledku anglicky
DIDSON acoustic cameras provide a way to collect temporally dense, high-resolution imaging data, similar to videos. Detection of fish targets on those videos takes place in a manual or semi-automated manner, typically assisted by specialised software. Exploiting the visual nature of the recordings, tools and techniques from the field of computer vision can be applied in order to facilitate the relatively involved workflows. Furthermore, machine learning techniques can be used to minimise user intervention and optimise for specific detection and tracking scenarios. This study explored the feasibility of combining optical flow with a genetic algorithm, with the aim of automating motion detection and optimising target-to-background segmentation (masking) under custom criteria, expressed in terms of the result. A 1000-frame video sequence sample with sparse, smoothly moving targets, reconstructed from a 125 s DIDSON recording, was analysed under two distinct scenarios, and an elementary detection method was used to assess and compare the resulting foreground (target) masks. The results indicate a high sensitivity to motion, as well as to the visual characteristics of targets, with the resulting foreground masks generally capturing fish targets on the majority of frames, potentially with small gaps of undetected targets, lasting for no more than a few frames. Despite the high computational overhead, implementation refinements could increase computational feasibility, while an extension of the algorithms, in order to include the steps of target detection and tracking, could further improve automation and potentially provide an efficient tool for the automated preliminary assessment of voluminous DIDSON data recordings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10502 - Oceanography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Water
ISSN
2073-4441
e-ISSN
2073-4441
Svazek periodika
13
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1304
Kód UT WoS článku
000650913300001
EID výsledku v databázi Scopus
2-s2.0-85105951683