On subpolygroup commutativity degree of finite polygroups
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F25%3A00560250" target="_blank" >RIV/60162694:G43__/25:00560250 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aimspress.com/article/doi/10.3934/math.20231211" target="_blank" >https://www.aimspress.com/article/doi/10.3934/math.20231211</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/math.20231211" target="_blank" >10.3934/math.20231211</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On subpolygroup commutativity degree of finite polygroups
Popis výsledku v původním jazyce
Probabilistic group theory is concerned with the probability of group elements or group subgroups satisfying certain conditions. On the other hand, a polygroup is a generalization of a group and a special case of a hypergroup. This paper generalizes probabilistic group theory to probabilistic polygroup theory. In this regard, we extend the concept of the subgroup commutativity degree of a finite group to the subpolygroup commutativity degree of a finite polygroup P. The latter measures the probability of two random subpolygroups H; K of P commuting (i.e., HK = KH). First, using the subgroup commutativity table and the subpolygroup commutativity table, we present some results related to the new defined concept for groups and for polygroups. We then consider the special case of a polygroup associated to a group. We study the subpolygroup lattice and relate this to the subgroup lattice of the base group; this includes deriving an explicit formula for the subpolygroup commutativity degree in terms of the subgroup commutativity degree. Finally, we illustrate our results via non-trivial examples by applying the formulas that we prove to the associated polygroups of some well-known groups such as the dihedral group and the symmetric group.
Název v anglickém jazyce
On subpolygroup commutativity degree of finite polygroups
Popis výsledku anglicky
Probabilistic group theory is concerned with the probability of group elements or group subgroups satisfying certain conditions. On the other hand, a polygroup is a generalization of a group and a special case of a hypergroup. This paper generalizes probabilistic group theory to probabilistic polygroup theory. In this regard, we extend the concept of the subgroup commutativity degree of a finite group to the subpolygroup commutativity degree of a finite polygroup P. The latter measures the probability of two random subpolygroups H; K of P commuting (i.e., HK = KH). First, using the subgroup commutativity table and the subpolygroup commutativity table, we present some results related to the new defined concept for groups and for polygroups. We then consider the special case of a polygroup associated to a group. We study the subpolygroup lattice and relate this to the subgroup lattice of the base group; this includes deriving an explicit formula for the subpolygroup commutativity degree in terms of the subgroup commutativity degree. Finally, we illustrate our results via non-trivial examples by applying the formulas that we prove to the associated polygroups of some well-known groups such as the dihedral group and the symmetric group.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AIMS MATHEMATICS
ISSN
2473-6988
e-ISSN
2473-6988
Svazek periodika
8
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
23786-23799
Kód UT WoS článku
001052388300016
EID výsledku v databázi Scopus
2-s2.0-85167423194