Transfer-Free Layered Graphene on Silica via Segregation through a Nickel Film for Electronic Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43921164" target="_blank" >RIV/60461373:22310/20:43921164 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsanm.0c01938?ref=pdf" target="_blank" >https://pubs.acs.org/doi/10.1021/acsanm.0c01938?ref=pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsanm.0c01938" target="_blank" >10.1021/acsanm.0c01938</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transfer-Free Layered Graphene on Silica via Segregation through a Nickel Film for Electronic Applications
Popis výsledku v původním jazyce
Transfer-free graphene growth via annealing-induced carbon segregation was investigated on a series of carbon/metal/silica layered samples prepared by sequential deposition of Ni from evaporation of Ni and amorphous carbon thin layers from carbon fiber threads on different silica substrates and further thermal treatments with different annealing times, in an attempt to clarify the evolution of carbon formation and its structural variation along with the segregation procedure. Raman and X-ray photoelectron spectroscopies were applied to analyze the microstructure and chemical composition of the generated graphene layer and the carbon microstructure in the depth direction of the metal layer with the aid of Ar-ion etching. The results revealed the annealing-time dependence of the generated graphene quality, possibly because of the competition between carbon diffusion and metal carbide formation/decomposition during annealing. Few-layer stacked graphene sheets with lower defect concentration and larger crystalline size could be grown with increasing annealing time (<1.5 h), while further extending the annealing time resulted in the pronounced formation of amorphous carbon. Similar results were obtained on different types of silica substrates, revealing that growth of graphene was conspicuously independent of the type of the silica substrate, despite a slight difference in the obtained graphene quality owing to a difference in the lattice microstructure and the surface defect. The in-depth understanding of the mechanism of graphitization helps further development of direct growth of high-quality graphene on insulating substrates for applications in electronic devices.
Název v anglickém jazyce
Transfer-Free Layered Graphene on Silica via Segregation through a Nickel Film for Electronic Applications
Popis výsledku anglicky
Transfer-free graphene growth via annealing-induced carbon segregation was investigated on a series of carbon/metal/silica layered samples prepared by sequential deposition of Ni from evaporation of Ni and amorphous carbon thin layers from carbon fiber threads on different silica substrates and further thermal treatments with different annealing times, in an attempt to clarify the evolution of carbon formation and its structural variation along with the segregation procedure. Raman and X-ray photoelectron spectroscopies were applied to analyze the microstructure and chemical composition of the generated graphene layer and the carbon microstructure in the depth direction of the metal layer with the aid of Ar-ion etching. The results revealed the annealing-time dependence of the generated graphene quality, possibly because of the competition between carbon diffusion and metal carbide formation/decomposition during annealing. Few-layer stacked graphene sheets with lower defect concentration and larger crystalline size could be grown with increasing annealing time (<1.5 h), while further extending the annealing time resulted in the pronounced formation of amorphous carbon. Similar results were obtained on different types of silica substrates, revealing that growth of graphene was conspicuously independent of the type of the silica substrate, despite a slight difference in the obtained graphene quality owing to a difference in the lattice microstructure and the surface defect. The in-depth understanding of the mechanism of graphitization helps further development of direct growth of high-quality graphene on insulating substrates for applications in electronic devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Nano Materials
ISSN
2574-0970
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
9984-9992
Kód UT WoS článku
000583331600104
EID výsledku v databázi Scopus
—