Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modelling of diesel filters for particulates removal

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F09%3A00022113" target="_blank" >RIV/60461373:22340/09:00022113 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modelling of diesel filters for particulates removal

  • Popis výsledku v původním jazyce

    Diesel particulate filter (DPF) is regarded as the most useful technology to reduce particulate matter from exhaust gas of a diesel engine, with filtration efficiencies in excess of 90%. Exhaust gas entering the channel is forced to flow through the ceramic porous walls into the adjoining cells and thus leaving the particulates behind. The collected particulate matter inside the trap has to be periodically oxidized to regenerate the DPF. We have developed a transient spatially 2D model of the filter, soot deposition and its regeneration. The momentum, mass and enthalpy balances of the gas and the solid phase were employed in the model including the description of heat conduction, diffusion in the solid phase and complex soot combustion kinetics. Detailed kinetics of soot combustion is considered: combustion by O2?both the thermal initiated one and the catalyzed one and the oxidation by NO2. The results of simulations include the prediction of development of concentrations, temperature,

  • Název v anglickém jazyce

    Modelling of diesel filters for particulates removal

  • Popis výsledku anglicky

    Diesel particulate filter (DPF) is regarded as the most useful technology to reduce particulate matter from exhaust gas of a diesel engine, with filtration efficiencies in excess of 90%. Exhaust gas entering the channel is forced to flow through the ceramic porous walls into the adjoining cells and thus leaving the particulates behind. The collected particulate matter inside the trap has to be periodically oxidized to regenerate the DPF. We have developed a transient spatially 2D model of the filter, soot deposition and its regeneration. The momentum, mass and enthalpy balances of the gas and the solid phase were employed in the model including the description of heat conduction, diffusion in the solid phase and complex soot combustion kinetics. Detailed kinetics of soot combustion is considered: combustion by O2?both the thermal initiated one and the catalyzed one and the oxidation by NO2. The results of simulations include the prediction of development of concentrations, temperature,

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    CI - Průmyslová chemie a chemické inženýrství

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GD104%2F08%2FH055" target="_blank" >GD104/08/H055: Transportní a reakční procesy v komplexních vícefázových systémech</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Journal

  • ISSN

    1385-8947

  • e-ISSN

  • Svazek periodika

    154

  • Číslo periodika v rámci svazku

    1-3

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    000274348700031

  • EID výsledku v databázi Scopus