Chemical Vapor Deposition of MoS2 for Energy Harvesting: Evolution of the Interfacial Oxide Layer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00525347" target="_blank" >RIV/61388955:_____/20:00525347 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/20:00525347 RIV/00216208:11310/20:10413889 RIV/00216208:11320/20:10413889
Výsledek na webu
<a href="http://hdl.handle.net/11104/0309512" target="_blank" >http://hdl.handle.net/11104/0309512</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsanm.0c01028" target="_blank" >10.1021/acsanm.0c01028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chemical Vapor Deposition of MoS2 for Energy Harvesting: Evolution of the Interfacial Oxide Layer
Popis výsledku v původním jazyce
The growth of two-dimensional (2D) materials directly on the substrates that are relevant to device fabrication is crucial for their large-area production and application. This is because their production via transfer processes not only increases the costs but, more importantly, induces contamination and mechanical defects in the transferred material. The presence of a dielectric interface layer and the control of its thickness in transistors and p–n heterojunctions are essential aspects in the semiconductor industry. In the present work, MoS2 flakes and films with thicknesses down to the monolayer limit were grown using chemical vapor deposition (CVD) on Si substrates covered with a native oxide layer. The high quality of the as-grown MoS2 resting on a flat SiO2 surface was documented by a combination of atomic force microscopy, optical spectroscopy, including tip-enhanced photoluminescence spectroscopy, and photoelectron microspectroscopy methods. The changes of the interfacial oxide were then interrogated using spectroscopic imaging ellipsometry and X-ray photoelectron spectroscopy, both with micrometer scale resolution, to show the increase of the oxide layer thickness by several nanometers during the heating and MoS2 growth processes. Our results evidence the possibility of growing high-quality MoS2 directly on thin dielectrics. However, at the same time, if this type of MoS2 deposition is to be used for device fabrication, the simultaneous increase of the SiO2 thickness makes it important to have proper knowledge and control of the growth process. For the applications in energy harvesting where only a thin (or none) insulating layer is required, alternative growth protocols, surface passivation, or a different dielectric material (e.g., Al2O3) are suggested.
Název v anglickém jazyce
Chemical Vapor Deposition of MoS2 for Energy Harvesting: Evolution of the Interfacial Oxide Layer
Popis výsledku anglicky
The growth of two-dimensional (2D) materials directly on the substrates that are relevant to device fabrication is crucial for their large-area production and application. This is because their production via transfer processes not only increases the costs but, more importantly, induces contamination and mechanical defects in the transferred material. The presence of a dielectric interface layer and the control of its thickness in transistors and p–n heterojunctions are essential aspects in the semiconductor industry. In the present work, MoS2 flakes and films with thicknesses down to the monolayer limit were grown using chemical vapor deposition (CVD) on Si substrates covered with a native oxide layer. The high quality of the as-grown MoS2 resting on a flat SiO2 surface was documented by a combination of atomic force microscopy, optical spectroscopy, including tip-enhanced photoluminescence spectroscopy, and photoelectron microspectroscopy methods. The changes of the interfacial oxide were then interrogated using spectroscopic imaging ellipsometry and X-ray photoelectron spectroscopy, both with micrometer scale resolution, to show the increase of the oxide layer thickness by several nanometers during the heating and MoS2 growth processes. Our results evidence the possibility of growing high-quality MoS2 directly on thin dielectrics. However, at the same time, if this type of MoS2 deposition is to be used for device fabrication, the simultaneous increase of the SiO2 thickness makes it important to have proper knowledge and control of the growth process. For the applications in energy harvesting where only a thin (or none) insulating layer is required, alternative growth protocols, surface passivation, or a different dielectric material (e.g., Al2O3) are suggested.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS APPLIED NANO MATERIALS
ISSN
2574-0970
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
6563-6573
Kód UT WoS článku
000555518200040
EID výsledku v databázi Scopus
2-s2.0-85090997408