Approximation of quantum graph vertex couplings by scaled Schrodinger operators on thin branched manifolds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F09%3A00330854" target="_blank" >RIV/61389005:_____/09:00330854 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/09:00159479
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximation of quantum graph vertex couplings by scaled Schrodinger operators on thin branched manifolds
Popis výsledku v původním jazyce
We discuss approximations of vertex couplings of quantum graphs using families of thin branched manifolds. We show that if a Neumann-type Laplacian on such manifolds is amended by suitable potentials, the resulting Schrodinger operators can approximate non-trivial vertex couplings. The latter include not only the delta-couplings but also those with wavefunctions discontinuous at the vertex. We work out the example of the symmetric delta'-couplings and make a conjecture that the same method can be applied to all couplings invariant with respect to the time reversal. We conclude with a result that certain vertex couplings cannot be approximated by a pure Laplacian.
Název v anglickém jazyce
Approximation of quantum graph vertex couplings by scaled Schrodinger operators on thin branched manifolds
Popis výsledku anglicky
We discuss approximations of vertex couplings of quantum graphs using families of thin branched manifolds. We show that if a Neumann-type Laplacian on such manifolds is amended by suitable potentials, the resulting Schrodinger operators can approximate non-trivial vertex couplings. The latter include not only the delta-couplings but also those with wavefunctions discontinuous at the vertex. We work out the example of the symmetric delta'-couplings and make a conjecture that the same method can be applied to all couplings invariant with respect to the time reversal. We conclude with a result that certain vertex couplings cannot be approximated by a pure Laplacian.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC06002" target="_blank" >LC06002: Dopplerův ústav pro matematickou fyziku a aplikovanou matematiku</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
41
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
000270303300021
EID výsledku v databázi Scopus
—