Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nodal sets of thin curved layers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F15%3A00442889" target="_blank" >RIV/61389005:_____/15:00442889 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21340/15:00227993

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.jde.2014.09.009" target="_blank" >http://dx.doi.org/10.1016/j.jde.2014.09.009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2014.09.009" target="_blank" >10.1016/j.jde.2014.09.009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nodal sets of thin curved layers

  • Popis výsledku v původním jazyce

    This paper is concerned with the location of nodal sets of eigenfunctions of the Dirichlet Laplacian in thin tubular neighbourhoods of hypersurfaces of the Euclidean space of arbitrary dimension. In the limit when the radius of the neighbourhood tends to zero, it is known that spectral properties of the Laplacian are approximated well by an effective Schrodinger operator on the hypersurface with a potential expressed solely in terms of principal curvatures. By applying techniques of elliptic partial differential equations, we strengthen the known perturbation results to get a convergence of eigenfunctions in Holder spaces. This enables us in particular to conclude that every nodal set has a non-empty intersection with the boundary of the tubular neighbourhood.

  • Název v anglickém jazyce

    Nodal sets of thin curved layers

  • Popis výsledku anglicky

    This paper is concerned with the location of nodal sets of eigenfunctions of the Dirichlet Laplacian in thin tubular neighbourhoods of hypersurfaces of the Euclidean space of arbitrary dimension. In the limit when the radius of the neighbourhood tends to zero, it is known that spectral properties of the Laplacian are approximated well by an effective Schrodinger operator on the hypersurface with a potential expressed solely in terms of principal curvatures. By applying techniques of elliptic partial differential equations, we strengthen the known perturbation results to get a convergence of eigenfunctions in Holder spaces. This enables us in particular to conclude that every nodal set has a non-empty intersection with the boundary of the tubular neighbourhood.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Svazek periodika

    258

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    281-301

  • Kód UT WoS článku

    000345488200002

  • EID výsledku v databázi Scopus

    2-s2.0-84922811335