Symmetrized quartic polynomial oscillators and their partial exact solvability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00459199" target="_blank" >RIV/61389005:_____/16:00459199 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.physleta.2016.02.035" target="_blank" >http://dx.doi.org/10.1016/j.physleta.2016.02.035</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physleta.2016.02.035" target="_blank" >10.1016/j.physleta.2016.02.035</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Symmetrized quartic polynomial oscillators and their partial exact solvability
Popis výsledku v původním jazyce
Sextic polynomial oscillator is probably the best known quantum system which is partially exactly alias quasi-exactly solvable (QES), i.e., which possesses closed-form, elementary-function bound states psi(x) at certain couplings and energies. In contrast, the apparently simpler and phenomenologically more important quartic polynomial oscillator is not QES. A resolution of the paradox is proposed: The one-dimensional Schrodinger equation is shown QES after the analyticity-violating symmetrization V(x)= A vertical bar x vertical bar + Bx(2) C vertical bar x vertical bar(3) + x(4) of the quartic polynomial potential.
Název v anglickém jazyce
Symmetrized quartic polynomial oscillators and their partial exact solvability
Popis výsledku anglicky
Sextic polynomial oscillator is probably the best known quantum system which is partially exactly alias quasi-exactly solvable (QES), i.e., which possesses closed-form, elementary-function bound states psi(x) at certain couplings and energies. In contrast, the apparently simpler and phenomenologically more important quartic polynomial oscillator is not QES. A resolution of the paradox is proposed: The one-dimensional Schrodinger equation is shown QES after the analyticity-violating symmetrization V(x)= A vertical bar x vertical bar + Bx(2) C vertical bar x vertical bar(3) + x(4) of the quartic polynomial potential.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-22945S" target="_blank" >GA16-22945S: Kvantová Wheelerova – DeWittova rovnice a její unitárně evoluční interpretace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics Letters. A
ISSN
0375-9601
e-ISSN
—
Svazek periodika
380
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
5
Strana od-do
1414-1418
Kód UT WoS článku
000373537600004
EID výsledku v databázi Scopus
2-s2.0-84959211200