Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Self-adjointness for the MIT bag model on an unbounded cone

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00581041" target="_blank" >RIV/61389005:_____/24:00581041 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/mana.202200386" target="_blank" >https://doi.org/10.1002/mana.202200386</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.202200386" target="_blank" >10.1002/mana.202200386</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Self-adjointness for the MIT bag model on an unbounded cone

  • Popis výsledku v původním jazyce

    We consider the massless Dirac operator with the MIT bag boundary conditions on an unbounded three-dimensional circular cone. For convex cones, we prove that this operator is self-adjoint defined on four-component H1-functions satisfying the MIT bag boundary conditions. The proof of this result relies on separation of variables and spectral estimates for one-dimensional fiber Dirac-type operators. Furthermore, we provide a numerical evidence for the self-adjointness on the same domain also for non-convex cones. Moreover, we prove a Hardy-type inequality for such a Dirac operator on convex cones, which, in particular, yields stability of self-adjointness under perturbations by a class of unbounded potentials. Further extensions of our results to Dirac operators with quantum dot boundary conditions are also discussed.

  • Název v anglickém jazyce

    Self-adjointness for the MIT bag model on an unbounded cone

  • Popis výsledku anglicky

    We consider the massless Dirac operator with the MIT bag boundary conditions on an unbounded three-dimensional circular cone. For convex cones, we prove that this operator is self-adjoint defined on four-component H1-functions satisfying the MIT bag boundary conditions. The proof of this result relies on separation of variables and spectral estimates for one-dimensional fiber Dirac-type operators. Furthermore, we provide a numerical evidence for the self-adjointness on the same domain also for non-convex cones. Moreover, we prove a Hardy-type inequality for such a Dirac operator on convex cones, which, in particular, yields stability of self-adjointness under perturbations by a class of unbounded potentials. Further extensions of our results to Dirac operators with quantum dot boundary conditions are also discussed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-07129S" target="_blank" >GA21-07129S: Nové jevy pocházející z narušení invariance vůči časové inversi</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

    1522-2616

  • Svazek periodika

    297

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    36

  • Strana od-do

    1006-1041

  • Kód UT WoS článku

    001119385200001

  • EID výsledku v databázi Scopus

    2-s2.0-85173902293