Robust Local Thickness Estimation of Sub-Micrometer Specimen by 4D-STEM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F23%3A00579321" target="_blank" >RIV/61389013:_____/23:00579321 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081731:_____/23:00579321
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/smtd.202300258" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/smtd.202300258</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/smtd.202300258" target="_blank" >10.1002/smtd.202300258</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Local Thickness Estimation of Sub-Micrometer Specimen by 4D-STEM
Popis výsledku v původním jazyce
A quantitative four-dimensional scanning transmission electron microscopy (4D-STEM) imaging technique (q4STEM) for local thickness estimation across amorphous specimen such as obtained by focused ion beam (FIB)-milling of lamellae for (cryo-)TEM analysis is presented. This study is based on measuring spatially resolved diffraction patterns to obtain the angular distribution of electron scattering, or the ratio of integrated virtual dark and bright field STEM signals, and their quantitative evaluation using Monte Carlo simulations. The method is independent of signal intensity calibrations and only requires knowledge of the detector geometry, which is invariant for a given instrument. This study demonstrates that the method yields robust thickness estimates for sub-micrometer amorphous specimen using both direct detection and light conversion 2D-STEM detectors in a coincident FIB-SEM and a conventional SEM. Due to its facile implementation and minimal dose reauirements, it is anticipated that this method will find applications for in situ thickness monitoring during lamella fabrication of beam-sensitive materials.
Název v anglickém jazyce
Robust Local Thickness Estimation of Sub-Micrometer Specimen by 4D-STEM
Popis výsledku anglicky
A quantitative four-dimensional scanning transmission electron microscopy (4D-STEM) imaging technique (q4STEM) for local thickness estimation across amorphous specimen such as obtained by focused ion beam (FIB)-milling of lamellae for (cryo-)TEM analysis is presented. This study is based on measuring spatially resolved diffraction patterns to obtain the angular distribution of electron scattering, or the ratio of integrated virtual dark and bright field STEM signals, and their quantitative evaluation using Monte Carlo simulations. The method is independent of signal intensity calibrations and only requires knowledge of the detector geometry, which is invariant for a given instrument. This study demonstrates that the method yields robust thickness estimates for sub-micrometer amorphous specimen using both direct detection and light conversion 2D-STEM detectors in a coincident FIB-SEM and a conventional SEM. Due to its facile implementation and minimal dose reauirements, it is anticipated that this method will find applications for in situ thickness monitoring during lamella fabrication of beam-sensitive materials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Small Methods
ISSN
2366-9608
e-ISSN
2366-9608
Svazek periodika
7
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
2300258
Kód UT WoS článku
000997748800001
EID výsledku v databázi Scopus
2-s2.0-85160667652