Invariant nonholonomic Riemannian structures on three-dimensional Lie groups
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F16%3AA1701JD6" target="_blank" >RIV/61988987:17310/16:A1701JD6 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Invariant nonholonomic Riemannian structures on three-dimensional Lie groups
Popis výsledku v původním jazyce
We consider Riemannian manifolds endowed with a nonholonomic distribution. These structures model mechanical systems with a (positive definite) quadratic Lagrangian and nonholonomic constraints linear in velocities. We classify the left-invariant nonholonomic Riemannian structures on three-dimensional simply connected Lie groups, and describe the equivalence classes in terms of some basic isometric invariants. The classification naturally splits into two cases. In the first case, it reduces to a classification of left-invariant sub-Riemannian structures. In the second case, we find a canonical frame with which to directly compare equivalence classes.
Název v anglickém jazyce
Invariant nonholonomic Riemannian structures on three-dimensional Lie groups
Popis výsledku anglicky
We consider Riemannian manifolds endowed with a nonholonomic distribution. These structures model mechanical systems with a (positive definite) quadratic Lagrangian and nonholonomic constraints linear in velocities. We classify the left-invariant nonholonomic Riemannian structures on three-dimensional simply connected Lie groups, and describe the equivalence classes in terms of some basic isometric invariants. The classification naturally splits into two cases. In the first case, it reduces to a classification of left-invariant sub-Riemannian structures. In the second case, we find a canonical frame with which to directly compare equivalence classes.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-02476S" target="_blank" >GA14-02476S: Variace, geometrie a fyzika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geometric Mechanics
ISSN
1941-4889
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
139-168
Kód UT WoS článku
000377074500001
EID výsledku v databázi Scopus
2-s2.0-84973138790