Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Use of neural networks for adaptive e-learning: A preliminary study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801QY3" target="_blank" >RIV/61988987:17310/17:A1801QY3 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Use of neural networks for adaptive e-learning: A preliminary study

  • Popis výsledku v původním jazyce

    Neural Computing, e.g. Artificial Neural Networks, is one of the most interesting and rapidly growing areas of research, attracting researchers from a wide variety of scientific disciplines. Starting from the basics, Neural Computing covers all the major approaches, putting each in perspective in terms of their capabilities, advantages, and disadvantages. Their use primarily focuses on predicting future behaviour of the given area, e.g. stock market. Adaptive system is able to react to changes from the outside aiming at minimizing the deviation from the required values that characterise the required state or behaviour of the system. Current adaptive systems take advantage of the use of expert systems. Unlike expert systems that use a predefined knowledge base of rules, neural networks learn from a set of examples thus creating their own unique configuration. The aim of this paper is to consider the use of neural networks in an existing e-learning system featuring adaptive characteristics based on a fuzzy expert system. Neural networks are used as a classifier, which generates personal study plans of students and are able to replace the previously used expert system. Nowadays, the experimental study of the whole proposed classifier is in a testing phase. Neural networks should then replace the fuzzy expert system with the goal to outperform it and to provide more accurate and suitable outputs. The final structure of the system should be simplified as the tool in the form of a series of neural networks. The proposed system should act as the only mediator between the tutor and the student in the process of creating a personalised study plan.

  • Název v anglickém jazyce

    Use of neural networks for adaptive e-learning: A preliminary study

  • Popis výsledku anglicky

    Neural Computing, e.g. Artificial Neural Networks, is one of the most interesting and rapidly growing areas of research, attracting researchers from a wide variety of scientific disciplines. Starting from the basics, Neural Computing covers all the major approaches, putting each in perspective in terms of their capabilities, advantages, and disadvantages. Their use primarily focuses on predicting future behaviour of the given area, e.g. stock market. Adaptive system is able to react to changes from the outside aiming at minimizing the deviation from the required values that characterise the required state or behaviour of the system. Current adaptive systems take advantage of the use of expert systems. Unlike expert systems that use a predefined knowledge base of rules, neural networks learn from a set of examples thus creating their own unique configuration. The aim of this paper is to consider the use of neural networks in an existing e-learning system featuring adaptive characteristics based on a fuzzy expert system. Neural networks are used as a classifier, which generates personal study plans of students and are able to replace the previously used expert system. Nowadays, the experimental study of the whole proposed classifier is in a testing phase. Neural networks should then replace the fuzzy expert system with the goal to outperform it and to provide more accurate and suitable outputs. The final structure of the system should be simplified as the tool in the form of a series of neural networks. The proposed system should act as the only mediator between the tutor and the student in the process of creating a personalised study plan.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the European Conference on e-Learning, ECEL

  • ISBN

    978-191121859-3

  • ISSN

    2048-8637

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    78-84

  • Název nakladatele

    Academic Conferences Limited

  • Místo vydání

    UK

  • Místo konání akce

    Porto; Portugal

  • Datum konání akce

    27. 10. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000457842600011