On generalized quotient MI-groups
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1801I3N" target="_blank" >RIV/61988987:17610/17:A1801I3N - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.fss.2017.02.011" target="_blank" >http://dx.doi.org/10.1016/j.fss.2017.02.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2017.02.011" target="_blank" >10.1016/j.fss.2017.02.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On generalized quotient MI-groups
Popis výsledku v původním jazyce
Many identities group (MI-group, for short) is an algebraic structure generalizing the group structure, where an involutive anti-automorphism satisfying certain properties is used instead of the standard group inversion. The concept of MI-group, in a more general form than in this article, has been introduced by Holčapek and Štěpnička in the paper 'MI-algebras: A new frame work for arithmetics of (extensional) fuzzy numbers' to describe properties of different approaches to arithmetics of vaguely specified quantities (e.g., stochastic or fuzzy quantities) in a unified way. This article is a continuation of the effort to develop the theory of MI-groups and is focused on a generalization of the construction of quotient MI-groups induced by so-called normal full MI-subgroups which has been introduced by Holčapek et al. recently in the paper 'Quotient MI-groups'. Besides a more general definition of quotient MI-groups, we prove three isomorphism theorems for MI-groups in this new framework.
Název v anglickém jazyce
On generalized quotient MI-groups
Popis výsledku anglicky
Many identities group (MI-group, for short) is an algebraic structure generalizing the group structure, where an involutive anti-automorphism satisfying certain properties is used instead of the standard group inversion. The concept of MI-group, in a more general form than in this article, has been introduced by Holčapek and Štěpnička in the paper 'MI-algebras: A new frame work for arithmetics of (extensional) fuzzy numbers' to describe properties of different approaches to arithmetics of vaguely specified quantities (e.g., stochastic or fuzzy quantities) in a unified way. This article is a continuation of the effort to develop the theory of MI-groups and is focused on a generalization of the construction of quotient MI-groups induced by so-called normal full MI-subgroups which has been introduced by Holčapek et al. recently in the paper 'Quotient MI-groups'. Besides a more general definition of quotient MI-groups, we prove three isomorphism theorems for MI-groups in this new framework.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Svazek periodika
326
Číslo periodika v rámci svazku
NOV 1 2017
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
3-23
Kód UT WoS článku
000412264700002
EID výsledku v databázi Scopus
—