Order-preserving fuzzy transform for singular boundary value problems of polytropic gas flow and sewage diffusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA2502N4W" target="_blank" >RIV/61988987:17610/24:A2502N4W - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0165011423003937" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0165011423003937</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2023.108748" target="_blank" >10.1016/j.fss.2023.108748</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Order-preserving fuzzy transform for singular boundary value problems of polytropic gas flow and sewage diffusion
Popis výsledku v původním jazyce
We describe a fuzzy transform method to analyze two-point singular and non-singular boundary value problems with high-order solution accuracies. This framework implements a fuzzy transform that approximates solutions with fourth-order accuracy at the interior mesh points. The fuzzy components and the triangular base function are locally arranged with a three-point linear combination of solution values. This yields a tri-diagonal Jacobian matrix that can be easily computed in a space-time efficient manner. Since a linear system relates solution values and fuzzy components, it is easy to obtain solution approximations via fuzzy components by a tri-diagonal matrix inversion. In addition to the numerical solution, it is easy to determine an approximate analytic solution using a cubic spline interpolating polynomial from the data available with fuzzy components. The error estimates for approximate analytical solutions and numerical solutions are obtained by integrated absolute error and maximum absolute errors. The new mechanism is analyzed for convergence using matrix theory. Several linear and nonlinear equations of practical importance related to sewage diffusion and polytropic gas flow models are simulated to corroborate the new scheme’s utility and fourth-order convergence.
Název v anglickém jazyce
Order-preserving fuzzy transform for singular boundary value problems of polytropic gas flow and sewage diffusion
Popis výsledku anglicky
We describe a fuzzy transform method to analyze two-point singular and non-singular boundary value problems with high-order solution accuracies. This framework implements a fuzzy transform that approximates solutions with fourth-order accuracy at the interior mesh points. The fuzzy components and the triangular base function are locally arranged with a three-point linear combination of solution values. This yields a tri-diagonal Jacobian matrix that can be easily computed in a space-time efficient manner. Since a linear system relates solution values and fuzzy components, it is easy to obtain solution approximations via fuzzy components by a tri-diagonal matrix inversion. In addition to the numerical solution, it is easy to determine an approximate analytic solution using a cubic spline interpolating polynomial from the data available with fuzzy components. The error estimates for approximate analytical solutions and numerical solutions are obtained by integrated absolute error and maximum absolute errors. The new mechanism is analyzed for convergence using matrix theory. Several linear and nonlinear equations of practical importance related to sewage diffusion and polytropic gas flow models are simulated to corroborate the new scheme’s utility and fourth-order convergence.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
15.01.2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
001102124500001
EID výsledku v databázi Scopus
2-s2.0-85174802940