Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Prediction Model of Alcohol Intoxication from Facial Temperature Dynamics Based on K-Means Clustering Driven by Evolutionary Computing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27200%2F19%3A10243037" target="_blank" >RIV/61989100:27200/19:10243037 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/19:10243037

  • Výsledek na webu

    <a href="https://www.mdpi.com/2073-8994/11/8/995" target="_blank" >https://www.mdpi.com/2073-8994/11/8/995</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/sym11080995" target="_blank" >10.3390/sym11080995</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Prediction Model of Alcohol Intoxication from Facial Temperature Dynamics Based on K-Means Clustering Driven by Evolutionary Computing

  • Popis výsledku v původním jazyce

    Alcohol intoxication is a significant phenomenon, affecting many social areas, including work procedures or car driving. Alcohol causes certain side effects including changing the facial thermal distribution, which may enable the contactless identification and classification of alcohol-intoxicated people. We adopted a multiregional segmentation procedure to identify and classify symmetrical facial features, which reliably reflects the facial-temperature variations while subjects are drinking alcohol. Such a model can objectively track alcohol intoxication in the form of a facial temperature map. In our paper, we propose the segmentation model based on the clustering algorithm, which is driven by the modified version of the Artificial Bee Colony (ABC) evolutionary optimization with the goal of facial temperature features extraction from the IR (infrared radiation) images. This model allows for a definition of symmetric clusters, identifying facial temperature structures corresponding with intoxication. The ABC algorithm serves as an optimization process for an optimal cluster&apos;s distribution to the clustering method the best approximate individual areas linked with gradual alcohol intoxication. In our analysis, we analyzed a set of twenty volunteers, who had IR images taken to reflect the process of alcohol intoxication. The proposed method was represented by multiregional segmentation, allowing for classification of the individual spatial temperature areas into segmentation classes. The proposed method, besides single IR image modelling, allows for dynamical tracking of the alcohol-temperature features within a process of intoxication, from the sober state up to the maximum observed intoxication level.

  • Název v anglickém jazyce

    Prediction Model of Alcohol Intoxication from Facial Temperature Dynamics Based on K-Means Clustering Driven by Evolutionary Computing

  • Popis výsledku anglicky

    Alcohol intoxication is a significant phenomenon, affecting many social areas, including work procedures or car driving. Alcohol causes certain side effects including changing the facial thermal distribution, which may enable the contactless identification and classification of alcohol-intoxicated people. We adopted a multiregional segmentation procedure to identify and classify symmetrical facial features, which reliably reflects the facial-temperature variations while subjects are drinking alcohol. Such a model can objectively track alcohol intoxication in the form of a facial temperature map. In our paper, we propose the segmentation model based on the clustering algorithm, which is driven by the modified version of the Artificial Bee Colony (ABC) evolutionary optimization with the goal of facial temperature features extraction from the IR (infrared radiation) images. This model allows for a definition of symmetric clusters, identifying facial temperature structures corresponding with intoxication. The ABC algorithm serves as an optimization process for an optimal cluster&apos;s distribution to the clustering method the best approximate individual areas linked with gradual alcohol intoxication. In our analysis, we analyzed a set of twenty volunteers, who had IR images taken to reflect the process of alcohol intoxication. The proposed method was represented by multiregional segmentation, allowing for classification of the individual spatial temperature areas into segmentation classes. The proposed method, besides single IR image modelling, allows for dynamical tracking of the alcohol-temperature features within a process of intoxication, from the sober state up to the maximum observed intoxication level.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Symmetry

  • ISSN

    2073-8994

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    31

  • Strana od-do

  • Kód UT WoS článku

    000483559300079

  • EID výsledku v databázi Scopus

    2-s2.0-85070531380