Detection and modeling of alcohol intoxication dynamic from IR images based on clustering driven by ABC algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242728" target="_blank" >RIV/61989100:27240/19:10242728 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-28377-3_32" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-28377-3_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-28377-3_32" target="_blank" >10.1007/978-3-030-28377-3_32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection and modeling of alcohol intoxication dynamic from IR images based on clustering driven by ABC algorithm
Popis výsledku v původním jazyce
Alcohol detection is a challenging issue due to many aspects, especially to security reasons. Conventional measuring systems usually utilize a direct contact with the human body to obtain on spot alcohol level estimation. Nevertheless, it is well known that there are several side effects including the facial temperature distribution for alcohol detection. Since the facial temperature map is observable from the infrared (IR) records, we have performed a set of experimental measurements allowing for dynamical tracking of time-dependent effect of the alcohol intoxication. In this paper, we have proposed the clustering multiregional segmentation driven by the genetic optimization, particularly the Artificial Bee Colony (ABC) algorithm for the facial IR segmentation. The genetic optimization determines an optimal distribution of the initial cluster's centroids, which represent the main part of a proper clustering. Based on the segmentation procedure, we have proposed a dynamical model allowing for prediction of time-dependent alcohol intoxication features. (C) Springer Nature Switzerland AG 2019.
Název v anglickém jazyce
Detection and modeling of alcohol intoxication dynamic from IR images based on clustering driven by ABC algorithm
Popis výsledku anglicky
Alcohol detection is a challenging issue due to many aspects, especially to security reasons. Conventional measuring systems usually utilize a direct contact with the human body to obtain on spot alcohol level estimation. Nevertheless, it is well known that there are several side effects including the facial temperature distribution for alcohol detection. Since the facial temperature map is observable from the infrared (IR) records, we have performed a set of experimental measurements allowing for dynamical tracking of time-dependent effect of the alcohol intoxication. In this paper, we have proposed the clustering multiregional segmentation driven by the genetic optimization, particularly the Artificial Bee Colony (ABC) algorithm for the facial IR segmentation. The genetic optimization determines an optimal distribution of the initial cluster's centroids, which represent the main part of a proper clustering. Based on the segmentation procedure, we have proposed a dynamical model allowing for prediction of time-dependent alcohol intoxication features. (C) Springer Nature Switzerland AG 2019.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11683
ISBN
978-3-030-28376-6
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
10
Strana od-do
393-402
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Hendaye
Datum konání akce
4. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—