Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis and Modeling of Alcohol Intoxication from IR Images based on Multiregional Image Segmentation and Correlation with Breath Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238646" target="_blank" >RIV/61989100:27240/17:10238646 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/document/8284106/" target="_blank" >http://ieeexplore.ieee.org/document/8284106/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICBDAA.2017.8284106" target="_blank" >10.1109/ICBDAA.2017.8284106</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis and Modeling of Alcohol Intoxication from IR Images based on Multiregional Image Segmentation and Correlation with Breath Analysis

  • Popis výsledku v původním jazyce

    Alcohol intoxication is an important procedure which is related to all social areas. There are commonly used standards like are the blood analysis or breath analysis. Although such methods are commonly used and give satisfactory results, there are also certain drawbacks. For instance it is direct contact and awareness of the tested person. One challenging direction of the alcohol assessment is the temperature effect whilst drinking, thus temperature variations may be reliable indicators of the current alcohol state. The paper deals with a comparative analysis of three multiregional segmentation methods with target of building of a mathematical model reflecting the facial areas well reflecting the dynamical process of the alcohol drinking. By such modelling we can make a predictor of the alcohol state based on the facial temperature effect. We have specified two significant features: nose and forehead areas where the temperature variations are well observable. Eventually, we have done a verification analysis between individual dynamical models and breath analysis on the base of the Pearson correlation coefficient. Correlation gives relatively strong dependence, when we consider a fact that some persons have stronger inclination to the alcohol which may negatively influence the IR records and the segmentation results as well.

  • Název v anglickém jazyce

    Analysis and Modeling of Alcohol Intoxication from IR Images based on Multiregional Image Segmentation and Correlation with Breath Analysis

  • Popis výsledku anglicky

    Alcohol intoxication is an important procedure which is related to all social areas. There are commonly used standards like are the blood analysis or breath analysis. Although such methods are commonly used and give satisfactory results, there are also certain drawbacks. For instance it is direct contact and awareness of the tested person. One challenging direction of the alcohol assessment is the temperature effect whilst drinking, thus temperature variations may be reliable indicators of the current alcohol state. The paper deals with a comparative analysis of three multiregional segmentation methods with target of building of a mathematical model reflecting the facial areas well reflecting the dynamical process of the alcohol drinking. By such modelling we can make a predictor of the alcohol state based on the facial temperature effect. We have specified two significant features: nose and forehead areas where the temperature variations are well observable. Eventually, we have done a verification analysis between individual dynamical models and breath analysis on the base of the Pearson correlation coefficient. Correlation gives relatively strong dependence, when we consider a fact that some persons have stronger inclination to the alcohol which may negatively influence the IR records and the segmentation results as well.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Big Data and Analytics (ICBDA) : conference proceedings : November 16-17, 2017, Kuching, Malaysia

  • ISBN

    978-1-5386-0790-9

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    5

  • Strana od-do

    49-54

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Kuching

  • Datum konání akce

    16. 11. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000426452100009