Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Numerical investigation of multiphase reactive processes using flamelet generated manifold approach and extended coherent flame combustion model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F21%3A10247554" target="_blank" >RIV/61989100:27230/21:10247554 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0196890421004374?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0196890421004374?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.enconman.2021.114261" target="_blank" >10.1016/j.enconman.2021.114261</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Numerical investigation of multiphase reactive processes using flamelet generated manifold approach and extended coherent flame combustion model

  • Popis výsledku v původním jazyce

    For the calculation of multiphase reactive processes in computational fluid dynamics (CFD), detailed chemical kinetics and simplified combustion models are commonly applied. An appropriate modelling approach to overcome the high computational demand of chemical kinetics is the flamelet generated manifold (FGM), which prescribe the calculation of chemical kinetics in preprocessor for the generation of the look-up databases that are used during CFD simulations with interpolation procedure. For the calculation of the chemistry kinetics in processor, combustion models are commonly applied, such as Three-zones extended coherent flame model (ECFM-3Z) that features calculation of flame speed in turbulent conditions. The primary goal of the research is to investigate and validate FGM and ECFM-3Z models on the multiphase reactive process inside a compression ignition engine for single and multiple injection strategies. Additionally, an overview of the modelling methodology and capability of FGM and ECFM-3Z models is presented, where the impact of their features is analysed on the results inside a compression ignition engine. For the numerical simulations, CFD code AVL FIRETM was used, where the calculated results such as in-cylinder pressure, temperature, rate of heat release, and nitric oxide emissions are computed. The FGM modelling approach showed higher ignition delay compared to the ECFM-3Z model for single-injection strategy, which can be attributed to the pretabulated autoignition conditions in three zones of the ECFM-3Z model. For the multi-injection strategy, such an ignition delay difference between FGM and ECFM-3Z is not observed since the small amount of injected fuel in pilot injections tends to have quicker ignition, which then creates better conditions for combustion of the more significant amount of injected fuel in the main injection. The experimental nitric oxide emission trend is achieved with both combustion modelling approaches, where the CFD calculation time for cases with FGM is reduced approximately by half. In comparison against the experimental values, both FGM and ECFM-3Z combustion modelling approaches showed the capability of predicting the influence of fuel injection strategy on the combustion process in passenger car compression ignition engines.

  • Název v anglickém jazyce

    Numerical investigation of multiphase reactive processes using flamelet generated manifold approach and extended coherent flame combustion model

  • Popis výsledku anglicky

    For the calculation of multiphase reactive processes in computational fluid dynamics (CFD), detailed chemical kinetics and simplified combustion models are commonly applied. An appropriate modelling approach to overcome the high computational demand of chemical kinetics is the flamelet generated manifold (FGM), which prescribe the calculation of chemical kinetics in preprocessor for the generation of the look-up databases that are used during CFD simulations with interpolation procedure. For the calculation of the chemistry kinetics in processor, combustion models are commonly applied, such as Three-zones extended coherent flame model (ECFM-3Z) that features calculation of flame speed in turbulent conditions. The primary goal of the research is to investigate and validate FGM and ECFM-3Z models on the multiphase reactive process inside a compression ignition engine for single and multiple injection strategies. Additionally, an overview of the modelling methodology and capability of FGM and ECFM-3Z models is presented, where the impact of their features is analysed on the results inside a compression ignition engine. For the numerical simulations, CFD code AVL FIRETM was used, where the calculated results such as in-cylinder pressure, temperature, rate of heat release, and nitric oxide emissions are computed. The FGM modelling approach showed higher ignition delay compared to the ECFM-3Z model for single-injection strategy, which can be attributed to the pretabulated autoignition conditions in three zones of the ECFM-3Z model. For the multi-injection strategy, such an ignition delay difference between FGM and ECFM-3Z is not observed since the small amount of injected fuel in pilot injections tends to have quicker ignition, which then creates better conditions for combustion of the more significant amount of injected fuel in the main injection. The experimental nitric oxide emission trend is achieved with both combustion modelling approaches, where the CFD calculation time for cases with FGM is reduced approximately by half. In comparison against the experimental values, both FGM and ECFM-3Z combustion modelling approaches showed the capability of predicting the influence of fuel injection strategy on the combustion process in passenger car compression ignition engines.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy Conversion and Management

  • ISSN

    0196-8904

  • e-ISSN

  • Svazek periodika

    240

  • Číslo periodika v rámci svazku

    _

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    000657725800003

  • EID výsledku v databázi Scopus

    2-s2.0-85105875640