Exploring Deep Learning Methods for Computer Vision Applications across Multiple Sectors: Challenges and Future Trends
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10253549" target="_blank" >RIV/61989100:27230/24:10253549 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.techscience.com/CMES/v139n1/55098" target="_blank" >https://www.techscience.com/CMES/v139n1/55098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmes.2023.028018" target="_blank" >10.32604/cmes.2023.028018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring Deep Learning Methods for Computer Vision Applications across Multiple Sectors: Challenges and Future Trends
Popis výsledku v původním jazyce
Computer vision (CV) was developed for computers and other systems to act or make recommendations based on visual inputs, such as digital photos, movies, and other media. Deep learning (DL) methods are more successful than other traditional machine learning (ML) methods in CV. DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization, object detection, and face recognition. In this review, a structured discussion on the history, methods, and applications of DL methods to CV problems is presented. The sector-wise presentation of applications in this paper may be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV. This review will provide readers with context and examples of how these techniques can be applied to specific areas. A curated list of popular datasets and a brief description of them are also included for the benefit of readers.
Název v anglickém jazyce
Exploring Deep Learning Methods for Computer Vision Applications across Multiple Sectors: Challenges and Future Trends
Popis výsledku anglicky
Computer vision (CV) was developed for computers and other systems to act or make recommendations based on visual inputs, such as digital photos, movies, and other media. Deep learning (DL) methods are more successful than other traditional machine learning (ML) methods in CV. DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization, object detection, and face recognition. In this review, a structured discussion on the history, methods, and applications of DL methods to CV problems is presented. The sector-wise presentation of applications in this paper may be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV. This review will provide readers with context and examples of how these techniques can be applied to specific areas. A curated list of popular datasets and a brief description of them are also included for the benefit of readers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES
ISSN
1526-1492
e-ISSN
1526-1506
Svazek periodika
139
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
03-141
Kód UT WoS článku
001109078200001
EID výsledku v databázi Scopus
—