Knowledge discovery from road traffic accident data in Ethiopia: Data quality, ensembling and trend analysis for improving road safety
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084520" target="_blank" >RIV/61989100:27240/12:86084520 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/12:86084520
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Knowledge discovery from road traffic accident data in Ethiopia: Data quality, ensembling and trend analysis for improving road safety
Popis výsledku v původním jazyce
Descriptive analysis of the magnitude and situation of road safety in general and road accidents in particular is important, but understanding of data quality, factors related with dangerous situations and various interesting patterns in data is of evengreater importance. Under the umbrella of information architecture research for road safety in developing countries, the objective of this machine learning experimental research is to explore data quality issues, analyze trends and predict the role of road users on possible injury risks. The research employed Tree Net, Classification and Adaptive Regression Trees (CART), Random Forest (RF) and hybrid ensemble approach. To identify relevant patterns and illustrate the performance of the techniques for the road safety domain, road accident data collected from Addis Ababa Traffic Office is subject to several analyses. Empirical results illustrate that data quality is a major problem that needs architectural guideline and the prototype mode
Název v anglickém jazyce
Knowledge discovery from road traffic accident data in Ethiopia: Data quality, ensembling and trend analysis for improving road safety
Popis výsledku anglicky
Descriptive analysis of the magnitude and situation of road safety in general and road accidents in particular is important, but understanding of data quality, factors related with dangerous situations and various interesting patterns in data is of evengreater importance. Under the umbrella of information architecture research for road safety in developing countries, the objective of this machine learning experimental research is to explore data quality issues, analyze trends and predict the role of road users on possible injury risks. The research employed Tree Net, Classification and Adaptive Regression Trees (CART), Random Forest (RF) and hybrid ensemble approach. To identify relevant patterns and illustrate the performance of the techniques for the road safety domain, road accident data collected from Addis Ababa Traffic Office is subject to several analyses. Empirical results illustrate that data quality is a major problem that needs architectural guideline and the prototype mode
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
30
Strana od-do
215-244
Kód UT WoS článku
000306821100001
EID výsledku v databázi Scopus
—