Mining pattern from road accident data: Role of road user's behaviour and implications for improving road safety
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86089242" target="_blank" >RIV/61989100:27240/13:86089242 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mining pattern from road accident data: Role of road user's behaviour and implications for improving road safety
Popis výsledku v původním jazyce
At the heart of any strategic effort to address a nationwide problem there is data or information. This research tries to view accident data collection and analysis as a system that requires a special view towards understanding the whole and making senseout of it for improved decision making in the effort of reducing the problem of road safety. As part of an information architecture research for road safety data/information management in developing countries, the objective of this machine learning experimental research is to explore and predict the role of road users on possible injury risks. The research employed Classification and Adaptive Regression Trees (CART), TreeNet and RandomForest approaches. To identify relevant patterns and illustrate theperformance of the techniques for the road safety domain, road accident data collected from Addis Ababa Traffic Office is used. After collecting the data and format it in the way suitable for the tool used model building and evaluation th
Název v anglickém jazyce
Mining pattern from road accident data: Role of road user's behaviour and implications for improving road safety
Popis výsledku anglicky
At the heart of any strategic effort to address a nationwide problem there is data or information. This research tries to view accident data collection and analysis as a system that requires a special view towards understanding the whole and making senseout of it for improved decision making in the effort of reducing the problem of road safety. As part of an information architecture research for road safety data/information management in developing countries, the objective of this machine learning experimental research is to explore and predict the role of road users on possible injury risks. The research employed Classification and Adaptive Regression Trees (CART), TreeNet and RandomForest approaches. To identify relevant patterns and illustrate theperformance of the techniques for the road safety domain, road accident data collected from Addis Ababa Traffic Office is used. After collecting the data and format it in the way suitable for the tool used model building and evaluation th
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Tomography and Statistics
ISSN
0972-9976
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IN - Indická republika
Počet stran výsledku
14
Strana od-do
73-86
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—