Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Matrix Descriptor of Changes (MDC): Activity Recognition Based on Skeleton

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241530" target="_blank" >RIV/61989100:27240/18:10241530 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-01449-0_2" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-01449-0_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-01449-0_2" target="_blank" >10.1007/978-3-030-01449-0_2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Matrix Descriptor of Changes (MDC): Activity Recognition Based on Skeleton

  • Popis výsledku v původním jazyce

    A new method called Matrix Descriptor of Changes (MDC) is introduced in this work for description and recognition of human activity from sequences of skeletons. The primary focus was on one of the main problems in this area which is different duration of activities; it is assumed that the beginning and the end are known. Some existing methods use bag of features, hidden Markov models, recurrent neural networks or straighten the time interval by different sampling so that each activity has the same number of frames to solve this problem. The essence of our method is creating one or more matrices with a constant size. The sizes of matrices depend on the vector dimension containing the per-frame low-level features from which the matrix is created. The matrices then characterize the activity, even if we assume that certain activities may have different durations. The principle of this method is tested with two types of input features: (i) 3D position of the skeleton joints and (ii) invariant angular features of the skeleton. All kinds of feature types are processed by MDC separately and, in the subsequent step, all the information gathered together as a feature vector are used for recognition by Support Vector Machine classifier. Experiments have shown that the results are similar to results of the state-of-the-art methods. The primary contribution of proposed method was creating a new simple descriptor for activity recognition with preservation of the state-of-the-art results. This method also has a potential for parallel implementation and execution. (C) 2018, Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    Matrix Descriptor of Changes (MDC): Activity Recognition Based on Skeleton

  • Popis výsledku anglicky

    A new method called Matrix Descriptor of Changes (MDC) is introduced in this work for description and recognition of human activity from sequences of skeletons. The primary focus was on one of the main problems in this area which is different duration of activities; it is assumed that the beginning and the end are known. Some existing methods use bag of features, hidden Markov models, recurrent neural networks or straighten the time interval by different sampling so that each activity has the same number of frames to solve this problem. The essence of our method is creating one or more matrices with a constant size. The sizes of matrices depend on the vector dimension containing the per-frame low-level features from which the matrix is created. The matrices then characterize the activity, even if we assume that certain activities may have different durations. The principle of this method is tested with two types of input features: (i) 3D position of the skeleton joints and (ii) invariant angular features of the skeleton. All kinds of feature types are processed by MDC separately and, in the subsequent step, all the information gathered together as a feature vector are used for recognition by Support Vector Machine classifier. Experiments have shown that the results are similar to results of the state-of-the-art methods. The primary contribution of proposed method was creating a new simple descriptor for activity recognition with preservation of the state-of-the-art results. This method also has a potential for parallel implementation and execution. (C) 2018, Springer Nature Switzerland AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11182

  • ISBN

    978-3-030-01448-3

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    14-25

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Poitiers

  • Datum konání akce

    24. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku