Matrix Descriptor of Changes (MDC): Activity Recognition Based on Skeleton
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241530" target="_blank" >RIV/61989100:27240/18:10241530 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-01449-0_2" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-01449-0_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-01449-0_2" target="_blank" >10.1007/978-3-030-01449-0_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Matrix Descriptor of Changes (MDC): Activity Recognition Based on Skeleton
Popis výsledku v původním jazyce
A new method called Matrix Descriptor of Changes (MDC) is introduced in this work for description and recognition of human activity from sequences of skeletons. The primary focus was on one of the main problems in this area which is different duration of activities; it is assumed that the beginning and the end are known. Some existing methods use bag of features, hidden Markov models, recurrent neural networks or straighten the time interval by different sampling so that each activity has the same number of frames to solve this problem. The essence of our method is creating one or more matrices with a constant size. The sizes of matrices depend on the vector dimension containing the per-frame low-level features from which the matrix is created. The matrices then characterize the activity, even if we assume that certain activities may have different durations. The principle of this method is tested with two types of input features: (i) 3D position of the skeleton joints and (ii) invariant angular features of the skeleton. All kinds of feature types are processed by MDC separately and, in the subsequent step, all the information gathered together as a feature vector are used for recognition by Support Vector Machine classifier. Experiments have shown that the results are similar to results of the state-of-the-art methods. The primary contribution of proposed method was creating a new simple descriptor for activity recognition with preservation of the state-of-the-art results. This method also has a potential for parallel implementation and execution. (C) 2018, Springer Nature Switzerland AG.
Název v anglickém jazyce
Matrix Descriptor of Changes (MDC): Activity Recognition Based on Skeleton
Popis výsledku anglicky
A new method called Matrix Descriptor of Changes (MDC) is introduced in this work for description and recognition of human activity from sequences of skeletons. The primary focus was on one of the main problems in this area which is different duration of activities; it is assumed that the beginning and the end are known. Some existing methods use bag of features, hidden Markov models, recurrent neural networks or straighten the time interval by different sampling so that each activity has the same number of frames to solve this problem. The essence of our method is creating one or more matrices with a constant size. The sizes of matrices depend on the vector dimension containing the per-frame low-level features from which the matrix is created. The matrices then characterize the activity, even if we assume that certain activities may have different durations. The principle of this method is tested with two types of input features: (i) 3D position of the skeleton joints and (ii) invariant angular features of the skeleton. All kinds of feature types are processed by MDC separately and, in the subsequent step, all the information gathered together as a feature vector are used for recognition by Support Vector Machine classifier. Experiments have shown that the results are similar to results of the state-of-the-art methods. The primary contribution of proposed method was creating a new simple descriptor for activity recognition with preservation of the state-of-the-art results. This method also has a potential for parallel implementation and execution. (C) 2018, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11182
ISBN
978-3-030-01448-3
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
14-25
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Poitiers
Datum konání akce
24. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—