Sparse Signal Representation, Sampling, and Recovery in Compressive Sensing Frameworks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250872" target="_blank" >RIV/61989100:27240/22:10250872 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9852418" target="_blank" >https://ieeexplore.ieee.org/document/9852418</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3197594" target="_blank" >10.1109/ACCESS.2022.3197594</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse Signal Representation, Sampling, and Recovery in Compressive Sensing Frameworks
Popis výsledku v původním jazyce
Compressive sensing allows the reconstruction of original signals from a much smaller number of samples as compared to the Nyquist sampling rate. The effectiveness of compressive sensing motivated the researchers for its deployment in a variety of application areas. The use of an efficient sampling matrix for high-performance recovery algorithms improves the performance of the compressive sensing framework significantly. This paper presents the underlying concepts of compressive sensing as well as previous work done in targeted domains in accordance with the various application areas. To develop prospects within the available functional blocks of compressive sensing frameworks, a diverse range of application areas are investigated. The three fundamental elements of a compressive sensing framework (signal sparsity, subsampling, and reconstruction) are thoroughly reviewed in this work by becoming acquainted with the key research gaps previously identified by the research community. Similarly, the basic mathematical formulation is used to outline some primary performance evaluation metrics for 1D and 2D compressive sensing.
Název v anglickém jazyce
Sparse Signal Representation, Sampling, and Recovery in Compressive Sensing Frameworks
Popis výsledku anglicky
Compressive sensing allows the reconstruction of original signals from a much smaller number of samples as compared to the Nyquist sampling rate. The effectiveness of compressive sensing motivated the researchers for its deployment in a variety of application areas. The use of an efficient sampling matrix for high-performance recovery algorithms improves the performance of the compressive sensing framework significantly. This paper presents the underlying concepts of compressive sensing as well as previous work done in targeted domains in accordance with the various application areas. To develop prospects within the available functional blocks of compressive sensing frameworks, a diverse range of application areas are investigated. The three fundamental elements of a compressive sensing framework (signal sparsity, subsampling, and reconstruction) are thoroughly reviewed in this work by becoming acquainted with the key research gaps previously identified by the research community. Similarly, the basic mathematical formulation is used to outline some primary performance evaluation metrics for 1D and 2D compressive sensing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
10
Číslo periodika v rámci svazku
August 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
85002-85018
Kód UT WoS článku
000842090100001
EID výsledku v databázi Scopus
—