Sampling Strategies for Exploratory Landscape Analysis of Bi-Objective Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10253457" target="_blank" >RIV/61989100:27240/22:10253457 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10216481" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10216481</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CSCI58124.2022.00067" target="_blank" >10.1109/CSCI58124.2022.00067</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sampling Strategies for Exploratory Landscape Analysis of Bi-Objective Problems
Popis výsledku v původním jazyce
Exploratory landscape analysis (ELA) is a popular method for the understanding of complex, often black-box optimization problems. It tries to approximate and describe the surfaces formed by the fitness and other characteristic values associated with problem solutions on top of the multi-dimensional solution spaces. Sampling is the initial step of the ELA pipeline. It is a strategy for selecting a limited number of solutions, i.e., points in the multi-dimensional solution space, for which the fitness function(s) are evaluated. Consequently, the fitness landscape is approximated and its properties are drawn from these fitness values. In this work, the properties and the impact of various sampling strategies on the analysis of the fitness landscape are studied in the context of bi-objective optimization. Extensive computational experiments show that the use of different sampling strategies affects both the value of high-level landscape features and their usability for problem classification. The results also demonstrate that the magnitude and significance of the impact depend on problem dimension and sample size.
Název v anglickém jazyce
Sampling Strategies for Exploratory Landscape Analysis of Bi-Objective Problems
Popis výsledku anglicky
Exploratory landscape analysis (ELA) is a popular method for the understanding of complex, often black-box optimization problems. It tries to approximate and describe the surfaces formed by the fitness and other characteristic values associated with problem solutions on top of the multi-dimensional solution spaces. Sampling is the initial step of the ELA pipeline. It is a strategy for selecting a limited number of solutions, i.e., points in the multi-dimensional solution space, for which the fitness function(s) are evaluated. Consequently, the fitness landscape is approximated and its properties are drawn from these fitness values. In this work, the properties and the impact of various sampling strategies on the analysis of the fitness landscape are studied in the context of bi-objective optimization. Extensive computational experiments show that the use of different sampling strategies affects both the value of high-level landscape features and their usability for problem classification. The results also demonstrate that the magnitude and significance of the impact depend on problem dimension and sample size.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 International Conference on Computational Science and Computational Intelligence, CSCI 2022 : proceedings
ISBN
979-8-3503-2029-9
ISSN
2769-5670
e-ISSN
2769-5654
Počet stran výsledku
7
Strana od-do
336-342
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Las Vegas
Datum konání akce
14. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—