Impact of Different Discrete Sampling Strategies on Fitness Landscape Analysis Based on Histograms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253620" target="_blank" >RIV/61989100:27240/23:10253620 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/abs/10.1145/3628454.3631563" target="_blank" >https://dl.acm.org/doi/abs/10.1145/3628454.3631563</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3628454.3631563" target="_blank" >10.1145/3628454.3631563</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of Different Discrete Sampling Strategies on Fitness Landscape Analysis Based on Histograms
Popis výsledku v původním jazyce
Complex problems are frequently tackled using techniques from the realm of computational intelligence and metaheuristic algorithms. Selection of a metaheuristic from the wide range of algorithms possessing various properties to address specific problem types efficiently is a difficult and crucial task to avoid unnecessary blind alleys and computational expenses. Approximation of continuous problem landscapes by a limited number of scattered discrete samples is a widespread problem characterization applied in exploratory landscape analysis (ELA). ELA is a set of methods analyzing the objective and solution spaces of a problem to construct features estimated from the random samples. This paper describes a simple method for fitness landscape analysis based on the normalized histograms of sample fitnesses. Generation of a small number of representative discrete samples is crucial for efficient problem characterization, and therefore, amount of sampling strategies including random generators and low-discrepancy sequences was developed to evenly cover the problem landscapes. The main contribution of this paper is a study examining the impact of different sampling strategies on the distribution of fitness values based on the normalized histogram analysis. The results reveal a strong effect.
Název v anglickém jazyce
Impact of Different Discrete Sampling Strategies on Fitness Landscape Analysis Based on Histograms
Popis výsledku anglicky
Complex problems are frequently tackled using techniques from the realm of computational intelligence and metaheuristic algorithms. Selection of a metaheuristic from the wide range of algorithms possessing various properties to address specific problem types efficiently is a difficult and crucial task to avoid unnecessary blind alleys and computational expenses. Approximation of continuous problem landscapes by a limited number of scattered discrete samples is a widespread problem characterization applied in exploratory landscape analysis (ELA). ELA is a set of methods analyzing the objective and solution spaces of a problem to construct features estimated from the random samples. This paper describes a simple method for fitness landscape analysis based on the normalized histograms of sample fitnesses. Generation of a small number of representative discrete samples is crucial for efficient problem characterization, and therefore, amount of sampling strategies including random generators and low-discrepancy sequences was developed to evenly cover the problem landscapes. The main contribution of this paper is a study examining the impact of different sampling strategies on the distribution of fitness values based on the normalized histogram analysis. The results reveal a strong effect.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACM International Conference Proceeding Series 2023
ISBN
979-8-4007-0849-7
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Bangkok
Datum konání akce
6. 12. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—