Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Randomization of Low-discrepancy Sampling Designs by Cranley-Patterson Rotation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253619" target="_blank" >RIV/61989100:27240/23:10253619 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dl.acm.org/doi/10.1145/3628454.3631564" target="_blank" >https://dl.acm.org/doi/10.1145/3628454.3631564</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3628454.3631564" target="_blank" >10.1145/3628454.3631564</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Randomization of Low-discrepancy Sampling Designs by Cranley-Patterson Rotation

  • Popis výsledku v původním jazyce

    Complex problems are often addressed by methods from the domain of computational intelligence, including metaheuristic algorithms. Different metaheuristics have different abilities to solve specific types of problems and the selection of suitable methods has a large impact on the ability to find good problem solutions. Problem characterization became an important step in the application of intelligent methods to practical problems. A popular approach to problem characterization is the exploratory landscape analysis. It consists of a sequence of operations that approximate and describe the hypersurfaces formed by characteristic problem properties from a limited sample of solutions. Exploratory landscape analysis uses a particular strategy to select just a small subset of problem solutions for which are the characteristic properties evaluated and high-level landscape features computed. Low-discrepancy sequences have been recently used to design a family of sampling strategies. They have useful space-filling properties but their effective and efficient randomization might represent an issue. In this work, we study the Cranley-Patterson rotation, a lightweight randomization strategy for low-discrepancy sequences, compare it with other randomization methods, and observe the effect its use has on the randomization of sets of sampling points in the context of exploratory landscape analysis.

  • Název v anglickém jazyce

    Randomization of Low-discrepancy Sampling Designs by Cranley-Patterson Rotation

  • Popis výsledku anglicky

    Complex problems are often addressed by methods from the domain of computational intelligence, including metaheuristic algorithms. Different metaheuristics have different abilities to solve specific types of problems and the selection of suitable methods has a large impact on the ability to find good problem solutions. Problem characterization became an important step in the application of intelligent methods to practical problems. A popular approach to problem characterization is the exploratory landscape analysis. It consists of a sequence of operations that approximate and describe the hypersurfaces formed by characteristic problem properties from a limited sample of solutions. Exploratory landscape analysis uses a particular strategy to select just a small subset of problem solutions for which are the characteristic properties evaluated and high-level landscape features computed. Low-discrepancy sequences have been recently used to design a family of sampling strategies. They have useful space-filling properties but their effective and efficient randomization might represent an issue. In this work, we study the Cranley-Patterson rotation, a lightweight randomization strategy for low-discrepancy sequences, compare it with other randomization methods, and observe the effect its use has on the randomization of sets of sampling points in the context of exploratory landscape analysis.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ACM International Conference Proceeding Series 2023

  • ISBN

    979-8-4007-0849-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    Association for Computing Machinery

  • Místo vydání

    New York

  • Místo konání akce

    Bangkok

  • Datum konání akce

    6. 12. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku