Randomization of Low-discrepancy Sampling Designs by Cranley-Patterson Rotation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253619" target="_blank" >RIV/61989100:27240/23:10253619 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3628454.3631564" target="_blank" >https://dl.acm.org/doi/10.1145/3628454.3631564</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3628454.3631564" target="_blank" >10.1145/3628454.3631564</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Randomization of Low-discrepancy Sampling Designs by Cranley-Patterson Rotation
Popis výsledku v původním jazyce
Complex problems are often addressed by methods from the domain of computational intelligence, including metaheuristic algorithms. Different metaheuristics have different abilities to solve specific types of problems and the selection of suitable methods has a large impact on the ability to find good problem solutions. Problem characterization became an important step in the application of intelligent methods to practical problems. A popular approach to problem characterization is the exploratory landscape analysis. It consists of a sequence of operations that approximate and describe the hypersurfaces formed by characteristic problem properties from a limited sample of solutions. Exploratory landscape analysis uses a particular strategy to select just a small subset of problem solutions for which are the characteristic properties evaluated and high-level landscape features computed. Low-discrepancy sequences have been recently used to design a family of sampling strategies. They have useful space-filling properties but their effective and efficient randomization might represent an issue. In this work, we study the Cranley-Patterson rotation, a lightweight randomization strategy for low-discrepancy sequences, compare it with other randomization methods, and observe the effect its use has on the randomization of sets of sampling points in the context of exploratory landscape analysis.
Název v anglickém jazyce
Randomization of Low-discrepancy Sampling Designs by Cranley-Patterson Rotation
Popis výsledku anglicky
Complex problems are often addressed by methods from the domain of computational intelligence, including metaheuristic algorithms. Different metaheuristics have different abilities to solve specific types of problems and the selection of suitable methods has a large impact on the ability to find good problem solutions. Problem characterization became an important step in the application of intelligent methods to practical problems. A popular approach to problem characterization is the exploratory landscape analysis. It consists of a sequence of operations that approximate and describe the hypersurfaces formed by characteristic problem properties from a limited sample of solutions. Exploratory landscape analysis uses a particular strategy to select just a small subset of problem solutions for which are the characteristic properties evaluated and high-level landscape features computed. Low-discrepancy sequences have been recently used to design a family of sampling strategies. They have useful space-filling properties but their effective and efficient randomization might represent an issue. In this work, we study the Cranley-Patterson rotation, a lightweight randomization strategy for low-discrepancy sequences, compare it with other randomization methods, and observe the effect its use has on the randomization of sets of sampling points in the context of exploratory landscape analysis.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACM International Conference Proceeding Series 2023
ISBN
979-8-4007-0849-7
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Bangkok
Datum konání akce
6. 12. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—