Comparing Sampling Strategies for the Classification of Bi-objective Problems by FLACCO Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253447" target="_blank" >RIV/61989100:27240/23:10253447 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-35734-3_13" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-35734-3_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-35734-3_13" target="_blank" >10.1007/978-3-031-35734-3_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing Sampling Strategies for the Classification of Bi-objective Problems by FLACCO Features
Popis výsledku v původním jazyce
Problem understanding and the ability to assign problems to distinct classes can improve the usability of metaheuristics. A popular problem-independent method for the characterization of optimization problems is exploratory landscape analysis (ELA). It consists of a sequence of operations that describe the hypersurfaces formed by fitness and other characteristic properties of the problem solutions on the basis of a limited number of samples. Sampling is the initial step of ELA that selects a limited number of candidate solutions for which are the characteristic properties evaluated. The solutions and the computed properties serve as the main inputs for the rest of ELA. In this work, we study the impact of different sampling strategies on machine learning-based classification of bi-objective problems on the basis of FLACCO features. A series of computational experiments demonstrates that different sampling strategies affect the value of the resulting landscape features, their suitability for problem classification, and the overhead of the sampling process. An in-depth analysis of the results also shows the relationship between classification accuracy and the structure of the training data set.
Název v anglickém jazyce
Comparing Sampling Strategies for the Classification of Bi-objective Problems by FLACCO Features
Popis výsledku anglicky
Problem understanding and the ability to assign problems to distinct classes can improve the usability of metaheuristics. A popular problem-independent method for the characterization of optimization problems is exploratory landscape analysis (ELA). It consists of a sequence of operations that describe the hypersurfaces formed by fitness and other characteristic properties of the problem solutions on the basis of a limited number of samples. Sampling is the initial step of ELA that selects a limited number of candidate solutions for which are the characteristic properties evaluated. The solutions and the computed properties serve as the main inputs for the rest of ELA. In this work, we study the impact of different sampling strategies on machine learning-based classification of bi-objective problems on the basis of FLACCO features. A series of computational experiments demonstrates that different sampling strategies affect the value of the resulting landscape features, their suitability for problem classification, and the overhead of the sampling process. An in-depth analysis of the results also shows the relationship between classification accuracy and the structure of the training data set.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Lecture Notes on Data Engineering and Communications Technologies. Volume 176
ISBN
978-3-031-35733-6
Počet stran výsledku
13
Strana od-do
124-136
Počet stran knihy
408
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—