Fitness Histograms of Expert-Defined Problem Classes in Fitness Landscape Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257022" target="_blank" >RIV/61989100:27240/24:10257022 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/Documents/2024/129239/" target="_blank" >https://www.scitepress.org/Documents/2024/129239/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012923900003837" target="_blank" >10.5220/0012923900003837</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fitness Histograms of Expert-Defined Problem Classes in Fitness Landscape Classification
Popis výsledku v původním jazyce
Various metaheuristic algorithms can be employed to find optimal or sub-optimal solutions for different problems. A fitness landscape (FL) is an abstraction representing a specific optimization task. Exploratory landscape analysis (ELA) approximates the FL by estimating its features from a limited number of random solution samples. Such ELA features help in estimating the properties of the FL and ultimately aid the selection of suitable optimization algorithms for problems with certain FL characteristics. This paper proposes using a normalized histogram of fitness values as a simple statistical feature vector for representing FLs. These histograms are classified using various classifiers to evaluate their effectiveness in representing different problems. The study focuses on 24 single-objective benchmark problems, grouped into five expert-defined classes. The performance of several classifiers is compared across different problem dimensions and sample sizes, emphasizing the impact of different sampling strategies and the number of histogram bins. The findings highlight the robustness of histogram representation and reveal promising experimental setups and relationships.
Název v anglickém jazyce
Fitness Histograms of Expert-Defined Problem Classes in Fitness Landscape Classification
Popis výsledku anglicky
Various metaheuristic algorithms can be employed to find optimal or sub-optimal solutions for different problems. A fitness landscape (FL) is an abstraction representing a specific optimization task. Exploratory landscape analysis (ELA) approximates the FL by estimating its features from a limited number of random solution samples. Such ELA features help in estimating the properties of the FL and ultimately aid the selection of suitable optimization algorithms for problems with certain FL characteristics. This paper proposes using a normalized histogram of fitness values as a simple statistical feature vector for representing FLs. These histograms are classified using various classifiers to evaluate their effectiveness in representing different problems. The study focuses on 24 single-objective benchmark problems, grouped into five expert-defined classes. The performance of several classifiers is compared across different problem dimensions and sample sizes, emphasizing the impact of different sampling strategies and the number of histogram bins. The findings highlight the robustness of histogram representation and reveal promising experimental setups and relationships.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 16th International Joint Conference on Computational Intelligence
ISBN
978-989-758-721-4
ISSN
2184-3236
e-ISSN
—
Počet stran výsledku
9
Strana od-do
205-213
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Setúbal
Místo konání akce
Porto
Datum konání akce
20. 11. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—