Fitness Landscape k-Nearest Neighbors Classification Based on Fitness Values Distribution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257021" target="_blank" >RIV/61989100:27240/24:10257021 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10611886" target="_blank" >https://ieeexplore.ieee.org/document/10611886</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC60901.2024.10611886" target="_blank" >10.1109/CEC60901.2024.10611886</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fitness Landscape k-Nearest Neighbors Classification Based on Fitness Values Distribution
Popis výsledku v původním jazyce
Metaheuristic algorithms prove efficient in addressing complex optimization problems. Selecting a suitable algorithm for a specific problem type can improve optimization per-formance that can vary across different problem types. A problem can be characterized by its Fitness Landscape (FL). Exploratory Landscape Analysis approximates the problem's FL by features computed from only a small number of random samples. In this work, we investigate FL representation by a normalized histogram of samples' fitness values. The histograms are used as simple problem representations for a k-Nearest Neighbors classification to examine their ability to represent the problems. We provide a comprehensive study of classification performance on 24 single-objective benchmark problems. Especially, the impact of different sampling strategies, distance measures, and numbers of histogram bins on classification accuracy for different problems is examined. The results support the usefulness of this representation and overall approach and reveal some interesting trends.
Název v anglickém jazyce
Fitness Landscape k-Nearest Neighbors Classification Based on Fitness Values Distribution
Popis výsledku anglicky
Metaheuristic algorithms prove efficient in addressing complex optimization problems. Selecting a suitable algorithm for a specific problem type can improve optimization per-formance that can vary across different problem types. A problem can be characterized by its Fitness Landscape (FL). Exploratory Landscape Analysis approximates the problem's FL by features computed from only a small number of random samples. In this work, we investigate FL representation by a normalized histogram of samples' fitness values. The histograms are used as simple problem representations for a k-Nearest Neighbors classification to examine their ability to represent the problems. We provide a comprehensive study of classification performance on 24 single-objective benchmark problems. Especially, the impact of different sampling strategies, distance measures, and numbers of histogram bins on classification accuracy for different problems is examined. The results support the usefulness of this representation and overall approach and reveal some interesting trends.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE Congress on Evolutionary Computation, CEC 2024 : proceedings
ISBN
979-8-3503-0837-2
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Jokohama
Datum konání akce
30. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—