Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256845" target="_blank" >RIV/61989100:27240/24:10256845 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360544224006996?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544224006996?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2024.130927" target="_blank" >10.1016/j.energy.2024.130927</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement
Popis výsledku v původním jazyce
This paper establishes a multi -objective optimization model for railway heavy -haul trains, focusing on reducing carbon emissions and improving transport efficiency. The model integrates optimization of the route and the vehicle load rate, significantly reducing carbon emissions and enhancing transport efficiency. It addresses the challenges and characteristics of heavy -haul trains, introducing multi -objective optimization problems related to transport carbon emissions and efficiency. Using a pigeon -inspired optimization algorithm, the model considers joint constraints between carbon emissions and transport efficiency objectives. To overcome challenges in multi -objective transportation problems, the paper proposes a forward -learning pigeon -inspired optimization algorithm based on a surrogate -assisted model. This approach calculates the quality of the candidate solution using a surrogate model, reducing time costs. The algorithm employs a forward -learning strategy to enhance learning from non -dominant solutions. Experimental validation with benchmark functions confirms the effectiveness of the model and offers optimized solutions. The proposed method reduces carbon emissions while maintaining transport efficiency, contributing innovative ideas for the development of sustainable heavy-duty trains.
Název v anglickém jazyce
Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement
Popis výsledku anglicky
This paper establishes a multi -objective optimization model for railway heavy -haul trains, focusing on reducing carbon emissions and improving transport efficiency. The model integrates optimization of the route and the vehicle load rate, significantly reducing carbon emissions and enhancing transport efficiency. It addresses the challenges and characteristics of heavy -haul trains, introducing multi -objective optimization problems related to transport carbon emissions and efficiency. Using a pigeon -inspired optimization algorithm, the model considers joint constraints between carbon emissions and transport efficiency objectives. To overcome challenges in multi -objective transportation problems, the paper proposes a forward -learning pigeon -inspired optimization algorithm based on a surrogate -assisted model. This approach calculates the quality of the candidate solution using a surrogate model, reducing time costs. The algorithm employs a forward -learning strategy to enhance learning from non -dominant solutions. Experimental validation with benchmark functions confirms the effectiveness of the model and offers optimized solutions. The proposed method reduces carbon emissions while maintaining transport efficiency, contributing innovative ideas for the development of sustainable heavy-duty trains.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Svazek periodika
294
Číslo periodika v rámci svazku
květen 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001217988700001
EID výsledku v databázi Scopus
—