A Combinatorial Approach for Optimizing Transportation System: Multi-Objective Decision-Making Framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F24%3A00378662" target="_blank" >RIV/68407700:21260/24:00378662 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.14311/NNW.2024.34.008" target="_blank" >https://doi.org/10.14311/NNW.2024.34.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2024.34.008" target="_blank" >10.14311/NNW.2024.34.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Combinatorial Approach for Optimizing Transportation System: Multi-Objective Decision-Making Framework
Popis výsledku v původním jazyce
This study presents a comprehensive multi-objective transportation model aimed at optimizing complex vehicle routing problems, which are nondeterministic polynomial time NP-hard due to spatial, temporal, and capacity constraints. In this study, the multi-objective transportation model integrates decisionmaker preferences with hybrid optimization techniques, including the approximatecombinatorial method, ant colony optimization and evolutionary algorithms. it seeks to minimize transportation costs, time, and emissions while accounting for real-world constraints such as fleet composition, customer demand, and servicelevel agreements. The techniques like multi-criteria decision-making methods are employed to refine the solution set, balancing objectives like cost, time, environmental impact, and service level. The novel optimization model is applied to a fuel distribution case study involving 18 customers and a heterogeneous fleet, where it optimizes vehicle routes to meet delivery requirements efficiently. The multiobjective transportation framework generates multiple feasible solutions, which are further narrowed down using decision-making frameworks to ensure alignment with organizational goals and decision-maker preferences. The integration of quantitative optimization techniques with qualitative decision-making processes makes this model robust and scalable, offering a practical tool for enhancing operational efficiency in transportation systems. This approach effectively addresses real-world logistics challenges, demonstrating significant improvements in route efficiency, cost savings, and environmental sustainability.
Název v anglickém jazyce
A Combinatorial Approach for Optimizing Transportation System: Multi-Objective Decision-Making Framework
Popis výsledku anglicky
This study presents a comprehensive multi-objective transportation model aimed at optimizing complex vehicle routing problems, which are nondeterministic polynomial time NP-hard due to spatial, temporal, and capacity constraints. In this study, the multi-objective transportation model integrates decisionmaker preferences with hybrid optimization techniques, including the approximatecombinatorial method, ant colony optimization and evolutionary algorithms. it seeks to minimize transportation costs, time, and emissions while accounting for real-world constraints such as fleet composition, customer demand, and servicelevel agreements. The techniques like multi-criteria decision-making methods are employed to refine the solution set, balancing objectives like cost, time, environmental impact, and service level. The novel optimization model is applied to a fuel distribution case study involving 18 customers and a heterogeneous fleet, where it optimizes vehicle routes to meet delivery requirements efficiently. The multiobjective transportation framework generates multiple feasible solutions, which are further narrowed down using decision-making frameworks to ensure alignment with organizational goals and decision-maker preferences. The integration of quantitative optimization techniques with qualitative decision-making processes makes this model robust and scalable, offering a practical tool for enhancing operational efficiency in transportation systems. This approach effectively addresses real-world logistics challenges, demonstrating significant improvements in route efficiency, cost savings, and environmental sustainability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
2336-4335
Svazek periodika
34
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
34
Strana od-do
135-168
Kód UT WoS článku
001414977900001
EID výsledku v databázi Scopus
—