On the Latent Structure of the bbob-biobj Test Suite
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257020" target="_blank" >RIV/61989100:27240/24:10257020 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-56855-8_20" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-56855-8_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-56855-8_20" target="_blank" >10.1007/978-3-031-56855-8_20</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Latent Structure of the bbob-biobj Test Suite
Popis výsledku v původním jazyce
Landscape analysis is a popular method for the characterization of black-box optimization problems. It consists of a sequence of operations that, from a limited sample of solutions, approximate and describe the hypersurfaces formed by characteristic problem properties. The hypersurfaces, called problem landscapes, are described by sets of carefully crafted features that ought to capture their characteristic properties. In this way, arbitrary optimization problems with potentially very different technical parameters, such as search space dimensionality, are projected into specific feature spaces where they can be further studied. The representation of a problem in a feature space can be used, for example, to find similar problems and identify metaheuristic optimization algorithms that have the best track record on the same type of tasks. Because of that, the quality and properties of problem representation in the feature spaces gain importance. In this work, we study the representation properties of the popular bbob-biobj test suite in the space of bi-objective features, analyze the structure naturally emerging in the feature space, and analyze the high-level properties of the projection. The obtained results clearly demonstrate the discrepancies between the latent structure of the test suite and its expert perception.
Název v anglickém jazyce
On the Latent Structure of the bbob-biobj Test Suite
Popis výsledku anglicky
Landscape analysis is a popular method for the characterization of black-box optimization problems. It consists of a sequence of operations that, from a limited sample of solutions, approximate and describe the hypersurfaces formed by characteristic problem properties. The hypersurfaces, called problem landscapes, are described by sets of carefully crafted features that ought to capture their characteristic properties. In this way, arbitrary optimization problems with potentially very different technical parameters, such as search space dimensionality, are projected into specific feature spaces where they can be further studied. The representation of a problem in a feature space can be used, for example, to find similar problems and identify metaheuristic optimization algorithms that have the best track record on the same type of tasks. Because of that, the quality and properties of problem representation in the feature spaces gain importance. In this work, we study the representation properties of the popular bbob-biobj test suite in the space of bi-objective features, analyze the structure naturally emerging in the feature space, and analyze the high-level properties of the projection. The obtained results clearly demonstrate the discrepancies between the latent structure of the test suite and its expert perception.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 14635
ISBN
978-3-031-56854-1
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
16
Strana od-do
326-341
Název nakladatele
Spinger
Místo vydání
Cham
Místo konání akce
Aberystwyth
Datum konání akce
3. 4. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001212344100020