Law of Large Numbers for Random LU-Fuzzy Numbers: Some Results in the Context of Simulation of Financial Quantities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F14%3A86090770" target="_blank" >RIV/61989100:27510/14:86090770 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Law of Large Numbers for Random LU-Fuzzy Numbers: Some Results in the Context of Simulation of Financial Quantities
Popis výsledku v původním jazyce
Financial problems can be analyzed by several ways. In the standard case, we assume that a given financial quantity in question is a stochastic (or random) variable, ie. it follows some probability distribution and its possible states can get prescribedparticular probabilities. However, in financial modeling it can appear that the estimation of parameters of such models (e.g. volatility) does not lead to reliable results, so that it can be fruitful to incorporate some kind of impreciseness. One can recognize an unnatural simplification of parameters that can lead to a loss of important information hidden in data. If one wants to apply Monte Carlo simulation to analyze a financial problem with values expressed by imprecisely defined numbers, it is important to show that random variables with imprecisely defined numbers satisfy the (strong) law of large numbers, as well. Otherwise such approach would have no sense. The aim of the paper is to provide a justification to this novel approac
Název v anglickém jazyce
Law of Large Numbers for Random LU-Fuzzy Numbers: Some Results in the Context of Simulation of Financial Quantities
Popis výsledku anglicky
Financial problems can be analyzed by several ways. In the standard case, we assume that a given financial quantity in question is a stochastic (or random) variable, ie. it follows some probability distribution and its possible states can get prescribedparticular probabilities. However, in financial modeling it can appear that the estimation of parameters of such models (e.g. volatility) does not lead to reliable results, so that it can be fruitful to incorporate some kind of impreciseness. One can recognize an unnatural simplification of parameters that can lead to a loss of important information hidden in data. If one wants to apply Monte Carlo simulation to analyze a financial problem with values expressed by imprecisely defined numbers, it is important to show that random variables with imprecisely defined numbers satisfy the (strong) law of large numbers, as well. Otherwise such approach would have no sense. The aim of the paper is to provide a justification to this novel approac
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th International Conference on Finance and Banking : 16-17 October 2013, Ostrava, Czech Republic
ISBN
978-80-7248-939-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
124-130
Název nakladatele
Silesian University, School of Business Administration
Místo vydání
Karviná
Místo konání akce
Ostrava
Datum konání akce
16. 10. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000345575000015