Divergence measures and weak majorization in estimation problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F14%3A86091093" target="_blank" >RIV/61989100:27510/14:86091093 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Divergence measures and weak majorization in estimation problems
Popis výsledku v původním jazyce
Statistical inference can be interpreted as a problem of minimum distance between an empirical (observed) and a theoretical distribution. The most used measures of dissimilarity/disparity between probability distributions are the well known divergence measures. These measures are not symmetric: basing on the duality in their formulation, we classify divergences within the context of estimation into two main classes and analyze them with reference to majorization theory. In this regard, the consistency of divergence measures with respect to the generalized (strong) majorization pre-order is can be easily derived from a well known characterization theorem. Nevertheless, in many practical contexts such as estimation problem, one of the main assumption for(strong) majorization could be unfulfilled. Thus we study under which conditions divergence measures are consistent with respect to the generalization of weak majorization (from above). This paper provides a guideline for the choice of a
Název v anglickém jazyce
Divergence measures and weak majorization in estimation problems
Popis výsledku anglicky
Statistical inference can be interpreted as a problem of minimum distance between an empirical (observed) and a theoretical distribution. The most used measures of dissimilarity/disparity between probability distributions are the well known divergence measures. These measures are not symmetric: basing on the duality in their formulation, we classify divergences within the context of estimation into two main classes and analyze them with reference to majorization theory. In this regard, the consistency of divergence measures with respect to the generalized (strong) majorization pre-order is can be easily derived from a well known characterization theorem. Nevertheless, in many practical contexts such as estimation problem, one of the main assumption for(strong) majorization could be unfulfilled. Thus we study under which conditions divergence measures are consistent with respect to the generalization of weak majorization (from above). This paper provides a guideline for the choice of a
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0016" target="_blank" >EE2.3.30.0016: Příležitost pro mladé výzkumníky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2nd International Conference on Mathematical, Computational and Statistical Sciences (MCSS '14); Proceedings of the 7th International Conference on Finite Difference...: Gdansk, Poland May 15-17, 2014
ISBN
978-960-474-380-3
ISSN
2227-4588
e-ISSN
—
Počet stran výsledku
6
Strana od-do
152-157
Název nakladatele
WSEAS Press
Místo vydání
Cambridge
Místo konání akce
Gdaňsk
Datum konání akce
25. 5. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—