Multi-objective optimization for periodic preventive maintenance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F15%3A10240757" target="_blank" >RIV/61989100:27510/15:10240757 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IESM.2015.7380154" target="_blank" >http://dx.doi.org/10.1109/IESM.2015.7380154</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IESM.2015.7380154" target="_blank" >10.1109/IESM.2015.7380154</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-objective optimization for periodic preventive maintenance
Popis výsledku v původním jazyce
This article investigates a JIT single machine scheduling problem with a periodic preventive maintenance. Also to maintain the quality of the products, there is a limitation on the maximum number of allowable jobs in each period. The proposed bi-objective mixed integer model minimizes total earliness-tardiness and makespan simultaneously. Due to the computational complexity of the problem, multi-objective particle swarm optimization (MOPSO) algorithm is implemented. Also, as well as MOPSO, two other optimization algorithms are used for comparing the results. Eventually, Taguchi method with metrics analysis is presented to tune the algorithms' parameters and a multiple criterion decision making (MCDM) technique based on the technique for order of preference by similarity to ideal solution (TOPSIS) is applied to choose the best algorithm. Comparison results confirmed supremacy of MOPSO to the other algorithms. (C) 2015 International Institute for Innovation, Industrial Engineering and Entrepreneurship - I4e2.
Název v anglickém jazyce
Multi-objective optimization for periodic preventive maintenance
Popis výsledku anglicky
This article investigates a JIT single machine scheduling problem with a periodic preventive maintenance. Also to maintain the quality of the products, there is a limitation on the maximum number of allowable jobs in each period. The proposed bi-objective mixed integer model minimizes total earliness-tardiness and makespan simultaneously. Due to the computational complexity of the problem, multi-objective particle swarm optimization (MOPSO) algorithm is implemented. Also, as well as MOPSO, two other optimization algorithms are used for comparing the results. Eventually, Taguchi method with metrics analysis is presented to tune the algorithms' parameters and a multiple criterion decision making (MCDM) technique based on the technique for order of preference by similarity to ideal solution (TOPSIS) is applied to choose the best algorithm. Comparison results confirmed supremacy of MOPSO to the other algorithms. (C) 2015 International Institute for Innovation, Industrial Engineering and Entrepreneurship - I4e2.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2015 International Conference on Industrial Engineering and Systems Management, IEEE IESM 2015
ISBN
978-2-9600532-6-5
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
10
Strana od-do
173-182
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Sevilla
Datum konání akce
21. 10. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000380454700021