THE APPLICATION OF FORECASTING SALES OF SERVICES TO INCREASE BUSINESS COMPETITIVENESS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10245190" target="_blank" >RIV/61989100:27510/20:10245190 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cjournal.cz/files/367.pdf" target="_blank" >https://www.cjournal.cz/files/367.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7441/joc.2020.02.06" target="_blank" >10.7441/joc.2020.02.06</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
THE APPLICATION OF FORECASTING SALES OF SERVICES TO INCREASE BUSINESS COMPETITIVENESS
Popis výsledku v původním jazyce
The accurate forecasting of business variables is a key element for a company's competitiveness which is becoming increasing necessary in this globalized and digitalized environment. Companies are responding to this need by intensifying accuracy requirements for forecasting economic variables. The objective of this article is to verify the correctness of the models predicting revenue in the service sector against 6 precision criteria to determine whether the use of certain criteria may lead to the adoption of particular models to improve competitive forecasting. This article seeks to determine the best accuracy predictors in 32 service areas broken down by NACE. Exponential smoothing models, ARIMA models, BATS models and artificial neural network models were selected for the assessment. Six criteria were chosen to measure accuracy using a group of scale-dependent errors and scaled errors. Services for which the result was ambiguous were subject to complete forecasting, both ex-post and ex-ante. Based on the analysis, the main result of the article is that only two types of services do not achieve the same accuracy results when using other measure criteria. It can therefore be said that for 93.75% of services, an assessment according to one precision parameter would suffice. Thus, a model's competitiveness is not affected by the choice of accuracy.
Název v anglickém jazyce
THE APPLICATION OF FORECASTING SALES OF SERVICES TO INCREASE BUSINESS COMPETITIVENESS
Popis výsledku anglicky
The accurate forecasting of business variables is a key element for a company's competitiveness which is becoming increasing necessary in this globalized and digitalized environment. Companies are responding to this need by intensifying accuracy requirements for forecasting economic variables. The objective of this article is to verify the correctness of the models predicting revenue in the service sector against 6 precision criteria to determine whether the use of certain criteria may lead to the adoption of particular models to improve competitive forecasting. This article seeks to determine the best accuracy predictors in 32 service areas broken down by NACE. Exponential smoothing models, ARIMA models, BATS models and artificial neural network models were selected for the assessment. Six criteria were chosen to measure accuracy using a group of scale-dependent errors and scaled errors. Services for which the result was ambiguous were subject to complete forecasting, both ex-post and ex-ante. Based on the analysis, the main result of the article is that only two types of services do not achieve the same accuracy results when using other measure criteria. It can therefore be said that for 93.75% of services, an assessment according to one precision parameter would suffice. Thus, a model's competitiveness is not affected by the choice of accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Competitiveness
ISSN
1804-171X
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
90-105
Kód UT WoS článku
000546258100007
EID výsledku v databázi Scopus
—