Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

THE APPLICATION OF FORECASTING SALES OF SERVICES TO INCREASE BUSINESS COMPETITIVENESS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10245190" target="_blank" >RIV/61989100:27510/20:10245190 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.cjournal.cz/files/367.pdf" target="_blank" >https://www.cjournal.cz/files/367.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7441/joc.2020.02.06" target="_blank" >10.7441/joc.2020.02.06</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    THE APPLICATION OF FORECASTING SALES OF SERVICES TO INCREASE BUSINESS COMPETITIVENESS

  • Popis výsledku v původním jazyce

    The accurate forecasting of business variables is a key element for a company&apos;s competitiveness which is becoming increasing necessary in this globalized and digitalized environment. Companies are responding to this need by intensifying accuracy requirements for forecasting economic variables. The objective of this article is to verify the correctness of the models predicting revenue in the service sector against 6 precision criteria to determine whether the use of certain criteria may lead to the adoption of particular models to improve competitive forecasting. This article seeks to determine the best accuracy predictors in 32 service areas broken down by NACE. Exponential smoothing models, ARIMA models, BATS models and artificial neural network models were selected for the assessment. Six criteria were chosen to measure accuracy using a group of scale-dependent errors and scaled errors. Services for which the result was ambiguous were subject to complete forecasting, both ex-post and ex-ante. Based on the analysis, the main result of the article is that only two types of services do not achieve the same accuracy results when using other measure criteria. It can therefore be said that for 93.75% of services, an assessment according to one precision parameter would suffice. Thus, a model&apos;s competitiveness is not affected by the choice of accuracy.

  • Název v anglickém jazyce

    THE APPLICATION OF FORECASTING SALES OF SERVICES TO INCREASE BUSINESS COMPETITIVENESS

  • Popis výsledku anglicky

    The accurate forecasting of business variables is a key element for a company&apos;s competitiveness which is becoming increasing necessary in this globalized and digitalized environment. Companies are responding to this need by intensifying accuracy requirements for forecasting economic variables. The objective of this article is to verify the correctness of the models predicting revenue in the service sector against 6 precision criteria to determine whether the use of certain criteria may lead to the adoption of particular models to improve competitive forecasting. This article seeks to determine the best accuracy predictors in 32 service areas broken down by NACE. Exponential smoothing models, ARIMA models, BATS models and artificial neural network models were selected for the assessment. Six criteria were chosen to measure accuracy using a group of scale-dependent errors and scaled errors. Services for which the result was ambiguous were subject to complete forecasting, both ex-post and ex-ante. Based on the analysis, the main result of the article is that only two types of services do not achieve the same accuracy results when using other measure criteria. It can therefore be said that for 93.75% of services, an assessment according to one precision parameter would suffice. Thus, a model&apos;s competitiveness is not affected by the choice of accuracy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50206 - Finance

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Competitiveness

  • ISSN

    1804-171X

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    16

  • Strana od-do

    90-105

  • Kód UT WoS článku

    000546258100007

  • EID výsledku v databázi Scopus