Energy-efficient multi-objective flexible manufacturing scheduling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10246395" target="_blank" >RIV/61989100:27510/21:10246395 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0959652620346540" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652620346540</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2020.124610" target="_blank" >10.1016/j.jclepro.2020.124610</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energy-efficient multi-objective flexible manufacturing scheduling
Popis výsledku v původním jazyce
This paper presents a novel scheduling of a resource-constrained Flexible Manufacturing System (FMS) with consideration of the following sub-problems: (i) machine loading and unloading, (ii) manufacturing operation scheduling, (iii) machine assignment, and (iv) Automated Guided Vehicle (AGV) scheduling. In the proposed model, both the AGV and machinery are considered as the required resources. Energy efficiency of AGVs has been studied in order to improve environmental sustainability in terms of a linear function, which is based on load and distance, accordingly. Because of the NP-hard characteristics of the problem, a modified multi-objective particle swarm optimization (MMOPSO) has been developed for solving the model and compared with the classic version of the multi-objective particle swarm optimization (MOPSO) algorithm in terms of five performance metrics. Finally, the results are evaluated by the application of a multi-criteria decision-making (MCDM) algorithm according to which the MMOPSO outperforms the MOPSO. (C) 2020 Elsevier Ltd
Název v anglickém jazyce
Energy-efficient multi-objective flexible manufacturing scheduling
Popis výsledku anglicky
This paper presents a novel scheduling of a resource-constrained Flexible Manufacturing System (FMS) with consideration of the following sub-problems: (i) machine loading and unloading, (ii) manufacturing operation scheduling, (iii) machine assignment, and (iv) Automated Guided Vehicle (AGV) scheduling. In the proposed model, both the AGV and machinery are considered as the required resources. Energy efficiency of AGVs has been studied in order to improve environmental sustainability in terms of a linear function, which is based on load and distance, accordingly. Because of the NP-hard characteristics of the problem, a modified multi-objective particle swarm optimization (MMOPSO) has been developed for solving the model and compared with the classic version of the multi-objective particle swarm optimization (MOPSO) algorithm in terms of five performance metrics. Finally, the results are evaluated by the application of a multi-criteria decision-making (MCDM) algorithm according to which the MMOPSO outperforms the MOPSO. (C) 2020 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-15530S" target="_blank" >GA18-15530S: Multi Objective Optimization Application in Flexible Manufacturing and Project Scheduling Problems: Theory and Applications</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
—
Svazek periodika
283
Číslo periodika v rámci svazku
124610
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
000609032200015
EID výsledku v databázi Scopus
2-s2.0-85095826060