On a parametric K-fold series and its connection to Nielsen-Kölbig relations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F23%3A10251948" target="_blank" >RIV/61989100:27510/23:10251948 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022247X22009921" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X22009921</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2022.126978" target="_blank" >10.1016/j.jmaa.2022.126978</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a parametric K-fold series and its connection to Nielsen-Kölbig relations
Popis výsledku v původním jazyce
The goal of this paper is twofold. First, we investigate the generating function of the parametric sum Sigma(n1 >=...>= nK >= 1) Pi(K)(j=1) 1/n(j) . (n(j) + x), K is an element of N, where x is real with vertical bar x vertical bar < 1. With the help of this approach, we generate a class of multiple zeta-star sums S*(K,lambda) := Sigma zeta*(s) with vertical bar s vertical bar = 2K + lambda, s(i) >= 2, lambda is an element of N-0, and evaluate them as special polynomial values at zeta(i). Second, as a somewhat surprising application, we restate our result concerning S*(K,lambda) with the help of the non-starred alternating multiple zeta values of the form zeta(<(u)over bar>, {1}(v)) and establish a new system of equations connected with Nielsen-Kolbig relations. This enables us a relatively direct insight into the dependence among such specific values. (c) 2022 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
On a parametric K-fold series and its connection to Nielsen-Kölbig relations
Popis výsledku anglicky
The goal of this paper is twofold. First, we investigate the generating function of the parametric sum Sigma(n1 >=...>= nK >= 1) Pi(K)(j=1) 1/n(j) . (n(j) + x), K is an element of N, where x is real with vertical bar x vertical bar < 1. With the help of this approach, we generate a class of multiple zeta-star sums S*(K,lambda) := Sigma zeta*(s) with vertical bar s vertical bar = 2K + lambda, s(i) >= 2, lambda is an element of N-0, and evaluate them as special polynomial values at zeta(i). Second, as a somewhat surprising application, we restate our result concerning S*(K,lambda) with the help of the non-starred alternating multiple zeta values of the form zeta(<(u)over bar>, {1}(v)) and establish a new system of equations connected with Nielsen-Kolbig relations. This enables us a relatively direct insight into the dependence among such specific values. (c) 2022 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Svazek periodika
522
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
126978
Kód UT WoS článku
000923243400001
EID výsledku v databázi Scopus
2-s2.0-85146090910